Honeywell

4850DR

Document Reader

Bar Code Guide

Disclaimer

Honeywell International Inc. ("HII") reserves the right to make changes in specifications and other information contained in this document without prior notice, and the reader should in all cases consult HII to determine whether any such changes have been made. The information in this publication does not represent a commitment on the part of HII.
HII shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material.
This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of HII.
© 2014 Honeywell International Inc. All rights reserved.
Web Address: www.honeywellaidc.com
Microsoft® Windows®, Windows NT®, Windows 2000, Windows ME, Windows XP, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation.
Other product names or marks mentioned in this document may be trademarks or registered trademarks of other companies and are the property of their respective owners.

Table of Contents

Chapter 1 - Getting Started

About This Manual 1-1
Unpacking Your Device 1-1
Document Reader Models 1-1
Aligning the Document Reader Tray 1-2
Reading Techniques 1-2
Using the Scanner Out of the Stand 1-3
Resetting the Defaults 1-3
Chapter 2 - Programming the Interface
Introduction 2-1
Programming the Interface - Plug and Play 2-1
USB IBM SurePos 2-1
USB PC Keyboard 2-1
USB HID 2-1
USB Serial 2-2
CTS/RTS Emulation 2-2
ACK/NAK Mode 2-2
Remote MasterMind ${ }^{\text {TM }}$ for USB 2-2
Wincor Nixdorf Beetle ${ }^{\text {TM }}$ Terminal Default Settings 2-3
Keyboard Country Layout 2-3
Keyboard Style 2-11
Keyboard Conversion 2-12
Control Character Output 2-12
Keyboard Modifiers 2-12
Chapter 3 - Input/Output Settings
Power Up Beeper 3-1
Beep on BEL Character 3-1
Trigger Click 3-1
Good Read and Error Indicators 3-2
Beeper - Good Read 3-2
Beeper Volume - Good Read 3-2
Beeper Pitch - Good Read 3-2
Beeper Pitch - Error 3-3
Beeper Duration - Good Read 3-3
LED - Good Read 3-3
LED - Indicator State 3-4
Number of Beeps - Good Read 3-4
Number of Beeps - Error 3-4
Beeper Volume Max 3-4
Good Read Delay 3-5
User-Specified Good Read Delay 3-5
Manual Trigger Modes 3-5
Serial Trigger Mode 3-5
Read Time-Out 3-6
Scan Stand Presentation Mode 3-6
Presentation LED Behavior after Decode 3-6
Presentation Sensitivity 3-6
Presentation Centering 3-6
CodeGate ${ }^{\circledR}$ 3-8
Hands Free Time-Out 3-8
Reread Delay 3-8
User-Specified Reread Delay 3-9
2D Reread Delay 3-9
Illumination Lights 3-10
Aimer Delay 3-10
User-Specified Aimer Delay 3-10
Aimer Mode 3-10
Centering 3-11
Preferred Symbology 3-12
High Priority Symbology 3-13
Low Priority Symbology 3-13
Preferred Symbology Time-out. 3-13
Preferred Symbology Default 3-13
Output Sequence Overview 3-13
Output Sequence Editor 3-13
To Add an Output Sequence 3-14
Other Programming Selections 3-14
Output Sequence Editor 3-15
Partial Sequence 3-15
Require Output Sequence 3-16
Multiple Symbols 3-16
No Read 3-16
Video Reverse 3-17
Working Orientation 3-17
Chapter 4 - Data Editing
Prefix/Suffix Overview 4-1
To Add a Prefix or Suffix: 4-1
To Clear One or All Prefixes or Suffixes 4-2
To Add a Carriage Return Suffix to All Symbologies 4-2
Prefix Selections 4-2
Suffix Selections 4-2
Function Code Transmit 4-3
Intercharacter, Interfunction, and Intermessage Delays 4-3
Intercharacter Delay 4-3
User Specified Intercharacter Delay 4-3
Interfunction Delay 4-4
Intermessage Delay 4-4

Chapter 5 - Data Formatting

Data Format Editor Introduction 5-1
Add a Data Format 5-1
Other Programming Selections 5-2
Terminal ID Table 5-3
Data Format Editor Commands 5-3
Move Commands 5-5
Search Commands 5-6
Miscellaneous Commands. 5-8
Data Formatter 5-10
Data Format Non-Match Error Tone 5-11
Primary/Alternate Data Formats 5-12
Single Scan Data Format Change 5-12
Chapter 6 - Symbologies
All Symbologies 6-1
Message Length Description 6-1
Codabar 6-2
Codabar Concatenation 6-3
Code 39 6-4
Code 32 Pharmaceutical (PARAF) 6-5
Full ASCII. 6-6
Code 39 Code Page 6-6
Interleaved 2 of 5 6-7
NEC 2 of 5 6-8
Code 93 6-9
Code 93 Code Page 6-10
Straight 2 of 5 Industrial (three-bar start/stop) 6-11
Straight 2 of 5 IATA (two-bar start/stop) 6-12
Matrix 2 of 5 6-13
Code 11 6-14
Code 128 6-15
ISBT 128 Concatenation 6-15
Code 128 Code Page 6-16
GS1-128 6-17
Telepen 6-18
UPC-A 6-19
UPC-A/EAN-13
with Extended Coupon Code 6-21
Coupon GS1 DataBar Output 6-21
UPC-E0 6-22
UPC-E1 6-24
EAN/JAN-13 6-25
Convert UPC-A to EAN-13 6-25
ISBN Translate 6-27
EAN/JAN-8 6-28
MSI 6-30
GS1 DataBar Omnidirectional 6-32
GS1 DataBar Limited 6-32
GS1 DataBar Expanded 6-33
Trioptic Code 6-33
Codablock A 6-34
Codablock F 6-35
PDF417 6-36
MacroPDF417 6-36
MicroPDF417 6-37
GS1 Composite Codes 6-37
UPC/EAN Version 6-38
GS1 Emulation 6-38
TCIF Linked Code 39 (TLC39) 6-39
QR Code 6-39
QR Code Page 6-40
Data Matrix 6-41
Data Matrix Code Page 6-41
MaxiCode 6-42
Aztec Code 6-43
Aztec Code Page 6-43
Chinese Sensible (Han Xin) Code 6-44
Postal Codes - 2D 6-45
Single 2D Postal Codes: 6-45
Combination 2D Postal Codes: 6-46
Postal Codes - Linear 6-49
China Post (Hong Kong 2 of 5) 6-49
Korea Post 6-50
Chapter 7-Interface Keys
Keyboard Function Relationships 7-1
Supported Interface Keys 7-3
Chapter 8 - Utilities
To Add a Test Code I.D. Prefix to All Symbologies 8-1
Show Decoder Revision 8-1
Show Scan Driver Revision 8-1
Show Software Revision 8-1
Show Data Format 8-1
Test Menu 8-2
TotalFreedom 8-2
Application Plug-Ins (Apps) 8-2
EZConfig-Scanning Introduction 8-3
Installing EZConfig-Scanning from the Web 8-3
Resetting the Defaults 8-4
Chapter 9 - Serial Programming Commands
Conventions. 9-1
Menu Command Syntax 9-1
Query Commands 9-1
Responses 9-2
Trigger Commands 9-3
Resetting the Custom Defaults 9-3
Menu Commands 9-4
Chapter 10 - Product Specifications
Depth of Field Charts 10-2
Typical Performance 10-2
Guaranteed Performance 10-2
Standard Connector Pinout 10-4
USB Type A Connector 10-4
USB Micro Type B Connector. 10-4
Chapter 11 - Maintenance
Repairs 11-1
Maintenance 11-1
Cleaning the Scanner 11-1
Inspecting Cords and Connectors 11-1
Replacing Cables in Corded Scanners 11-1
Replacing an Interface Cable 11-1
Troubleshooting a Scanner 11-1
Chapter 12 - Customer Support
Technical Assistance 12-1
Product Service and Repair 12-1
Appendix A-Reference Charts
Symbology Charts A-1
Linear Symbologies A-1
2D Symbologies A-3
Postal Symbologies A-3
ASCII Conversion Chart (Code Page 1252) A-3
Lower ASCII Reference Table A-4
ISO 2022/ISO 646 Character Replacements A-8
Unicode Key Maps A-10

Getting Started

About This Manual

This Bar Code Guide provides installation and programming instructions for the 4850dr document reader. Product specifications, dimensions, warranty, and customer support information are also included.

Honeywell document readers are factory programmed for the most common terminal and communications settings. If you need to change these settings, programming is accomplished by scanning the bar codes in this guide.
An asterisk (*) next to an option indicates the default setting.

Unpacking Your Device

After you open the shipping carton containing the product, take the following steps:

- Check for damage during shipment. Report damage immediately to the carrier who delivered the carton.
- Make sure the items in the carton match your order.
- Save the shipping container for later storage or shipping.

The packaging for this device is as eco-friendly as we could make it. Please recycle the packaging.

Document Reader Models

The chart below lists the interfaces that can be used with your 4850DR document reader:

Interface
USB keyboard
USB HID
USB retail (IBM SurePOS)
USB COM port emulation

Connecting the Document Reader with USB

A document reader can be connected to the USB port of a computer.

1. Connect the appropriate interface cable to the document reader first, then to the computer.

2. The document reader beeps.
3. Verify the document reader operation by scanning a bar code from the Sample Symbols in the back of this manual.
4. The unit defaults to a USB Serial. Refer to page 2-1 for other USB terminal settings.

For additional USB programming and technical information, refer to Honeywell "USB Application Note," available at www.honeywell.com/aidc.

Aligning the Document Reader Tray

Proper cable placement is important for accurate alignment of the device. Place the cable in the wire channel if the imager will remain in the base most of the time. If you plan to frequently lift out the imager to scan items, then set the cable in the location where it will rest while the imager is in the stand.
Note: The 4850dr will not capture any images until it has been properly aligned using the following procedure.

1. Loosen the screw in the base tray with a coin.
2. Place the alignment page on the tray. Align the upper left corner of the alignment page to the upper left corner of the tray.
3. Make sure the serial number on the alignment page matches the serial number on your document reader.

4. Press the button on the imager to display the illuminated aimer crosshairs. You will hear a single beep that indicates you are using the correct page.
(If you hear an error razz and the aimer turns off, then you have the wrong alignment page for your document reader.)
5. Move the tray until the illuminated aimer crosshairs line up with the printed crosshairs on the alignment page. (Be sure to wait until the crosshairs go off before removing power or attempting to capture an image.)
6. Remove the alignment page and tighten the screw. Save the alignment page in the event that the tray needs to be realigned in the future.

Note: If you need to print a new copy of the alignment page, make sure to print the page in landscape mode.

Reading Techniques

The document reader has a view finder that projects a bright aimer that corresponds to the document reader's horizontal field of view. The bar code should be centered under the aiming crosshairs, but can be positioned in any direction for a good read.

The aimer is smaller when the bar code is closer to the document reader and larger when it is farther away. Symbologies with smaller bars or elements (mil size) should be read closer to the unit. Symbologies with larger bars or elements (mil size) should be read farther from the unit. To read single or multiple symbols (on a page or on an object), hold the bar code at an appropriate distance from the document reader, press the trigger, and center the aimer on the symbol. If the code being scanned is highly reflective (e.g., laminated), it may be necessary to tilt the code $\pm 5^{\circ}$ to prevent unwanted reflection.

Using the Scanner Out of the Stand

If you remove the scanner from the stand to read bar codes, you should hold it closer to the bar code. The optimum read range is 9 to 11 inches (22.86 to 27.94 cm). Since this is primarily a document imager and works like a camera, you must hold the scanner steady when scanning bar codes out of the stand.

Resetting the Defaults

If you want the factory default settings restored to your device, scan the Activate Custom Defaults bar code below. This is the recommended default bar code for most users. It resets the device to the custom default settings. If there are no custom defaults, it will reset the device to the factory default settings.

Activate Custom Defaults

$$
1-4
$$

Programming the Interface

Introduction

This chapter describes how to program your document reader for the desired interface.

Programming the Interface - Plug and Play

Plug and Play bar codes provide instant set up for commonly used interfaces.
Note: After you scan one of the codes, power cycle the host terminal to have the interface in effect.

USB IBM SurePos

Scan one of the following "Plug and Play" codes to program the scanner for an IBM SurePos (USB handheld scanner) or IBM SurePos (USB tabletop scanner) interface.

Note: After scanning one of these codes, you must power cycle the cash register.

USB IBM SurePos
(USB Handheld Scanner) Interface

Each bar code above also programs the following suffixes for each symbology:

Symbology	Suffix	Symbology	Suffix
EAN 8	0C	Code 39	00 OA OB
EAN 13	16	Interleaved 2 of 5	00 OD OB
UPC A	OD	Code 128	00 18 OB
UPC E	OA	Code 39	00 OA OB

USB PC Keyboard

Scan the following code to program the scanner for a USB PC Keyboard with a CR suffix.

USB HID

Scan the following code to program the scanner for USB HID bar code scanners.

USB Serial

Scan the following code to program the scanner to emulate a regular RS232-based COM Port. If you are using a Microsoft \mathbb{R} Windows® PC, you will need to download a driver from the Honeywell website (www.honeywellaidc.com). The driver will use the next available COM Port number. Apple® Macintosh computers recognize the scanner as a USB CDC class device and automatically use a class driver.

Note: No extra configuration (e.g., baud rate) is necessary.

ACK/NAK Mode

USBACK1.
ACK/NAK Mode On

Remote MasterMind ${ }^{\text {TM }}$ for USB

When using a USB interface, you may wish to configure your scanner to communicate with Remote MasterMind Scanner Management Software (ReM). Scan the ReM On bar code to communicate with ReM. To disable this capability, scan ReM Off.
Default $=$ ReM On.

* ReM On

Wincor Nixdorf Beetle ${ }^{T M}$ Terminal Default Settings

Scan the following Plug and Play code to program the scanner for a Wincor Nixdorf Beetle terminal. The following prefixes are programmed for each symbology:

Symbology	Prefix	Symbology	Prefix
Code 128	K	EAN-13	A
Code 93	L	GS1-128	P
Codabar	N	Interleaved 2 of 5	I
UPC-A	A0	Plessey	O
UPC-E	C	Straight 2 of 5 IATA	H
EAN-8	B	All other bar codes	M

Wincor Nixdorf Beetle Settings

Keyboard Country Layout

Scan the appropriate country code below to program the keyboard layout for your country or language. As a general rule, the following characters are supported, but need special care for countries other than the United States:
@ | \$ \# \{ \} [] = / ' | < > ~

Keyboard Countries

KBDCTYO

* United States

K BDCTY 5.
Albania

KBDCTYBD.
Azeri (Latin)

KBDCTYB2.
Belarus

Keyboard Countries (Continued)
 |||
 K BDCTY 3.
 Bosnia

KBDCTY59.
Brazil (MS)

KBDCTY52.
Bulgaria (Cyrillic)

KBDCTY53.
Bulgaria (Latin)

Canada (French)

KBDCTY32
Croatia

Czech (Programmers)

Keyboard Countries (Continued)

KBDCTY3B.
Czech (QWERTZ)

KBDCTY3. France

Keyboard Countries (Continued)

Greek (220 Latin)

KBCOTY63.
Greek (Latin)

Hungarian (101 key)
 Iceland

Keyboard Countries (Continued)

KBDCTY28.
Japan ASCII

Kyrgyz (Cyrillic)

Keyboard Countries (Continued)

KBDCTY8G.
Mongolian (Cyrillic)

KBDCTY 20.
Poland

KBDCTY25.
Romania

KBDCTYE7.
Russian (MS)

Keyboard Countries (Continued)

K CDCTY BE .
Serbia (Latin)

Slovakia

KBDCTY51.
Spanish variation

Keyboard Countries (Continued)

KBDCTY24.
Turkey Q

KBCOTY 7
United Kingdom

KBDCTYBG.
United Stated (Dvorak right)

Keyboard Countries (Continued)

Keyboard Style

This programs keyboard styles, such as Caps Lock and Shift Lock. If you have used Keyboard Conversion settings, they will override any of the following Keyboard Style settings. Default = Regular.

Regular is used when you normally have the Caps Lock key off.

Caps Lock is used when you normally have the Caps Lock key on.

Shift Lock is used when you normally have the Shift Lock key on (not common to U.S. keyboards).

Automatic Caps Lock is used if you change the Caps Lock key on and off. The software tracks and reflects if you have Caps Lock on or off. This selection can only be used with systems that have an LED that notes the Caps Lock status (AT keyboards).

Automatic Caps Lock

Autocaps via NumLock bar code should be scanned in countries (e.g., Germany, France) where the Caps Lock key cannot be used to toggle Caps Lock. The NumLock option works similarly to the regular Autocaps, but uses the NumLock key to retrieve the current state of the Caps Lock.

KBDSTY7.
Autocaps via NumLock
Emulate External Keyboard should be scanned if you do not have an external keyboard (IBM AT or equivalent).

Emulate External Keyboard
Note: After scanning the Emulate External Keyboard bar code, you must power cycle your computer.

Keyboard Conversion

Alphabetic keyboard characters can be forced to be all upper case or all lowercase. So if you have the following bar code: "abc569GK," you can make the output "ABC569GK" by scanning Convert All Characters to Upper Case, or to "abc569gk" by scanning Convert All Characters to Lower Case.

These settings override Keyboard Style selections. Default = Keyboard Conversion Off.

Control Character Output

This selection sends a text string instead of a control character. For example, when the control character for a carriage return is expected, the output would display [CR] instead of the ASCII code of OD. Refer to ASCII Conversion Chart (Code Page 1252) on page A-3. Only codes 00 through 1F are converted (the first column of the chart).

Note: Control + X (Control + ASCII) Mode overrides this mode.
Default $=$ Off.

KBDNPE1.
Control Character Output On

Keyboard Modifiers

This modifies special keyboard features, such as CTRL+ ASCII codes and Turbo Mode.
Control + X (Control + ASCII) Mode On: The scanner sends key combinations for ASCII control characters for values 00-1F. Windows is the preferred mode. All keyboard country codes are supported. DOS mode is a legacy mode, and it does not support all keyboard country codes. New users should use the Windows mode. Refer to Keyboard Function Relationships, page 71 for CTRL+ X Values.

Windows Mode Prefix/Suffix Off: The scanner sends key combinations for ASCII control characters for values 00-1F, but it does not translate any prefix or suffix information.

```
Default = Control + X Mode Off.
```


Windows Mode Control + X
Mode On

KBCCAS1.
DOS Mode Control + X Mode On

Windows Mode Prefix/Suffix Off

Turbo Mode: The scanner sends characters to a terminal faster. If the terminal drops characters, do not use Turbo Mode. Default = Off.

KBDTMD1.
Turbo Mode On

Numeric Keypad Mode: Sends numeric characters as if entered from a numeric keypad. Default = Off.

Numeric Keypad Mode On

* Numeric Keypad Mode Off

Automatic Direct Connect Mode: This selection can be used if you have an IBM AT style terminal and the system is dropping characters. Default $=$ Off.

KBDADC1.
Automatic Direct Connect Mode
On

KBCADCD

* Automatic Direct Connect Mode Off

Input/Output Settings

Power Up Beeper

The scanner can be programmed to beep when it's powered up. Scan the Off bar code(s) if you don't want a power up beep. Default = Power Up Beeper On - Scanner.

Power Up Beeper Off -
Scanner

Beep on BEL Character

You may wish to force the scanner to beep upon a command sent from the host. If you scan the Beep on BEL On bar code below, the scanner will beep every time a BEL character is received from the host. Default = Beep on BEL Off.

Trigger Click

To hear an audible click every time the scanner trigger is pressed, scan the Trigger Click On bar code below. Scan the Trigger Click Off code if you don't wish to hear the click. (This feature has no effect on serial or automatic triggering.) Default = Trigger Click Off.

Good Read and Error Indicators

Beeper - Good Read

The beeper may be programmed On or Off in response to a good read. Turning this option off only turns off the beeper response to a good read indication. All error and menu beeps are still audible. Default = Beeper - Good Read On.

Beeper Volume - Good Read

The beeper volume codes modify the volume of the beep the scanner emits on a good read. Default = High.

Beeper Pitch - Good Read

The beeper pitch codes modify the pitch (frequency) of the beep the scanner emits on a good read. Default = Medium.

* Medium
(2700 Hz)

BEPFQ14200.
High (4200 Hz)

Beeper Pitch - Error

The beeper pitch codes modify the pitch (frequency) of the sound the scanner emits when there is a bad read or error. Default $=$ Razz.

BEPFO24200.
High (4200 Hz)

Beeper Duration - Good Read

The beeper duration codes modify the length of the beep the scanner emits on a good read. Default = Normal.

* Normal Beep

LED - Good Read

The LED indicator can be programmed On or Off in response to a good read. Default =On.

BEPLED1.

* LED - Good Read On

LED - Indicator State

The LED indicator can be programmed to have an idle state of either Off or On, with a good read blink in the opposite state. When programmed to LED Indicator Off, the LED indicator is Off in its idle state. It blinks On for a good read, then returns to its idle Off state. When programmed to LED Indicator On, the LED indicator is On in its idle state. It blinks Off for a good read, then returns to its idle On state. (LED Indicator On can also be used as a power on indicator.) Default = LED Indicator Off.

BEPPO10

* LED Indicator Off

LED Indicator On

Number of Beeps - Good Read

The number of beeps of a good read can be programmed from 1-9. The same number of beeps will be applied to the beeper and LED in response to a good read. For example, if you program this option to have five beeps, there will be five beeps and five LED flashes in response to a good read. The beeps and LED flashes are in sync with one another. To change the number of beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

Number of Beeps - Error

The number of beeps and LED flashes emitted by the scanner for a bad read or error can be programmed from 1-9. For example, if you program this option to have five error beeps, there will be five error beeps and five LED flashes in response to an error. To change the number of error beeps, scan the bar code below and then scan a digit (1-9) bar code and the Save bar code on the Programming Chart inside the back cover of this manual. Default $=1$.

Number of Error Beeps/LED Flashes

Beeper Volume Max

Scan the following bar code to set all error and good read beeps to the maximum volume. This feature also sets the Beeper Pitch - Good Read to the highest level.

Good Read Delay

This sets the minimum amount of time before the scanner can read another bar code. Default $=0 \mathrm{~ms}$ (No Delay).

User-Specified Good Read Delay

If you want to set your own length for the good read delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

Manual Trigger Modes

When in manual trigger mode, the scanner scans until a bar code is read, or until the trigger is released. Two modes are available, Normal and Enhanced. Normal mode offers good scan speed and the longest working ranges (depth of field).
Enhanced mode will give you the highest possible scan speed but slightly less range than Normal mode. Enhanced mode is best used when you require a very fast scan speed and don't require a long working range. Default = Manual Trigger-Normal.

* Manual Trigger - Normal

PAPHHS.
Manual Trigger - Enhanced

Serial Trigger Mode

You can activate the scanner either by pressing the trigger, or using a serial trigger command (see Trigger Commands on page $9-3)$. When in serial mode, the scanner scans until a bar code has been read or until the deactivate command is sent. The scanner can also be set to turn itself off after a specified time has elapsed (see Read Time-Out, which follows).

Read Time-Out

Use this selection to set a time-out (in milliseconds) of the scanner's trigger when using serial commands to trigger the scanner. Once the scanner has timed out, you can activate the scanner either by pressing the trigger or using a serial trigger command. After scanning the Read Time-Out bar code, set the time-out duration (from 0-300,000 milliseconds) by scanning digits on the Programming Chart inside the back cover, then scanning Save. Default $=30,000 \mathrm{~ms}$.

Scan Stand Presentation Mode

Scan Stand Presentation Mode uses ambient light to detect bar codes. When in Scan Stand Presentation Mode, the LEDs turn on for 10 seconds and scan when a bar code is detected. The LEDs remain off when no bar code is detected. If the light level in the room is not high enough, Scan Stand Presentation Mode may not work properly. Scan the following bar code to program your scanner for Scan Stand Presentation Mode.

Scan Stand Presentation Mode

Presentation LED Behavior after Decode

When a scanner is in presentation mode, the LEDs turn off 15 seconds after a bar code is decoded. If you wish to turn off the LEDs immediately after a bar code is decoded, scan the LEDs Off bar code, below. Default = LEDs On.

If a bar code is not touched by a predefined window, it will not be decoded or output by the scanner. If Presentation Centering is turned on by scanning Presentation Centering On, the scanner only reads codes that pass through the centering window you specify using the Top of Presentation Centering Window, Bottom of Presentation Centering Window, Left, and Right of Presentation Centering Window bar codes.
In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Presentation Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save. Default Presentation Centering $=40 \%$ for Top and Left, 60% for Bottom and Right.

Presentation Centering On

PDCWINO.

* Presentation Centering Off

PDCTOP
Top of Presentation Centering Window

CodeGate ${ }^{\circledR}$

When CodeGate is On, the trigger is used to allow decoded data to be transmitted to the host system. The scanner remains on, scanning and decoding bar codes, but the bar code data is not transmitted until the trigger is pressed. When CodeGate is Off, bar code data is transmitted when it is decoded. Default = CodeGate Off Out-of-Stand.

* CodeGate Off

Out-of-Stand

Hands Free Time-Out

Presentation Modes are referred to as "hands free" modes. If the scanner's trigger is pressed when using a hands free mode, the scanner changes to manual trigger mode. You can set the time the scanner should remain in manual trigger mode by setting the Hands Free Time-Out. Once the time-out value is reached, (if there have been no further trigger presses) the scanner reverts to the original hands free mode.
Scan the Hands Free Time-Out bar code, then scan the time-out duration (from 0-300,000 milliseconds) from the inside back cover, and Save. Default $=5,000 \mathrm{~ms}$.

Reread Delay

This sets the time period before the scanner can read the same bar code a second time. Setting a reread delay protects against accidental rereads of the same bar code. Longer delays are effective in minimizing accidental rereads. Use shorter delays in applications where repetitive bar code scanning is required. Reread Delay only works when in a Scan Stand Presentation Mode (see page 3-6). Default = Long.

DLYRRD750.
Medium (750 ms)

User-Specified Reread Delay

If you want to set your own length for the reread delay, scan the bar code below, then set the delay (from 0-30,000 milliseconds) by scanning digits from the inside back cover, then scanning Save.

2D Reread Delay

Sometimes 2D bar codes can take longer to read than other bar codes. If you wish to set a separate Reread Delay for 2D bar codes, scan one of the programming codes that follows. 2D Reread Delay Off indicates that the time set for Reread Delay is used for both 1D and 2D bar codes. Default = 2D Reread Delay Off.

DLY2RR1000.
Short (1000ms)

DLY2RR3OLIO.
Long (3000 ms)

DLY2RR4DOU.
Extra Long (4000 ms)

Illumination Lights

If you want the illumination lights on while reading a bar code, scan the Lights On bar code, below. However, if you want to turn just the lights off, scan the Lights Off bar code. Default = Lights On.

Note: This setting does not affect the aimer light. The aiming light can be set using Aimer Mode (page 3-10).

Aimer Delay

The aimer delay allows a delay time for the operator to aim the scanner before the picture is taken. Use these codes to set the time between when the trigger is pressed and when the picture is taken. During the delay time, the aiming light will appear, but the LEDs won't turn on until the delay time is over. Default = Off.

User-Specified Aimer Delay

If you want to set your own length for the duration of the delay, scan the bar code below, then set the time-out by scanning digits ($0-4,000 \mathrm{~ms}$) from the Programming Chart inside the back cover of this manual, then scan Save.

Aimer Mode

This feature allows you to turn the aimer on and off. When the Interlaced bar code is scanned, the aimer is interlaced with the illumination LEDs. Default = Interlaced.

Centering

Use Centering to narrow the scanner's field of view to make sure that when the scanner is hand-held, it reads only those bar codes intended by the user. For instance, if multiple codes are placed closely together, centering will insure that only the desired codes are read. (Centering can be used in conjunction with Aimer Delay, page 3-10, for the most error-free operation in applications where multiple codes are spaced closely together. Using the Aimer Delay and Centering features, the scanner can emulate the operation of older systems, such as linear laser bar code scanners.)
Note: To adjust centering when the scanner is in the stand, see Presentation Centering (page 3-6).
If a bar code is not touched by a predefined window, it will not be decoded or output by the scanner. If centering is turned on by scanning Centering On, the scanner only reads codes that pass through the centering window you specify using the Top of Centering Window, Bottom of Centering Window, Left, and Right of Centering Window bar codes.
In the example below, the white box is the centering window. The centering window has been set to 20% left, 30% right, 8% top, and 25% bottom. Since Bar Code 1 passes through the centering window, it will be read. Bar Code 2 does not pass through the centering window, so it will not be read.

Note: A bar code needs only to be touched by the centering window in order to be read. It does not need to pass completely through the centering window.

Scan Centering On, then scan one of the following bar codes to change the top, bottom, left, or right of the centering window. Then scan the percent you want to shift the centering window using digits on the inside back cover of this manual. Scan Save. Default Centering $=40 \%$ for Top and Left, 60% for Bottom and Right.

DECTOP.
Top of Centering Window

Bottom of Centering Window

Right of Centering Window

Preferred Symbology

The scanner can be programmed to specify one symbology as a higher priority over other symbologies in situations where both bar code symbologies appear on the same label, but the lower priority symbology cannot be disabled.
For example, you may be using the scanner in a retail setting to read U.P.C. symbols, but have occasional need to read a code on a drivers license. Since some licenses have a Code 39 symbol as well as the PDF417 symbol, you can use Preferred Symbology to specify that the PDF417 symbol be read instead of the Code 39.
Preferred Symbology classifies each symbology as high priority, low priority, or as an unspecified type. When a low priority symbology is presented, the scanner ignores it for a set period of time (see Preferred Symbology Time-out on page 3-13) while it searches for the high priority symbology. If a high priority symbology is located during this period, then that data is read immediately.
If the time-out period expires before a high priority symbology is read, the scanner will read any bar code in its view (low priority or unspecified). If there is no bar code in the scanner's view after the time-out period expires, then no data is reported.
Note: A low priority symbol must be centered on the aiming pattern to be read.
Scan a bar code below to enable or disable Preferred Symbology. Default = Preferred Symbology Off.

PRFENA.
Preferred Symbology On

High Priority Symbology

To specify the high priority symbology, scan the High Priority Symbology bar code below. On the Symbology Charts on page A-1, find the symbology you want to set as high priority. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart (inside back cover). Scan Save to save your selection. Default = None

Low Priority Symbology

To specify the low priority symbology, scan the Low Priority Symbology bar code below. On the Symbology Charts on page A-1, find the symbology you want to set as low priority. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart (inside back cover).
If you want to set additional low priority symbologies, scan FF, then scan the 2 digit hex value from the Programming Chart for the next symbology. You can program up to 5 low priority symbologies. Scan Save to save your selection. Default = None.

Preferred Symbology Time-out

Once you have enabled Preferred Symbology and entered the high and low priority symbologies, you must set the time-out period. This is the period of time the scanner will search for a high priority bar code after a low priority bar code has been encountered. Scan the bar code below, then set the delay (from 1-3,000 milliseconds) by scanning digits from the inside back cover, then scanning Save. Default $=500 \mathrm{~ms}$.

Preferred Symbology Default

Scan the bar code below to set all Preferred Symbology entries to their default values.

> Preferred Symbology Default

Output Sequence Overview

Output Sequence Editor

This programming selection allows you to program the scanner to output data (when scanning more than one symbol) in whatever order your application requires, regardless of the order in which the bar codes are scanned. Reading the Default Sequence symbol programs the scanner to the Universal values, shown below. These are the defaults. Be certain you want to delete or clear all formats before you read the Default Sequence symbol.
Note: To make Output Sequence Editor selections, you'll need to know the code I.D., code length, and character match(es) your application requires. Use the Alphanumeric symbols (inside back cover) to read these options. You must hold the trigger down while reading each bar code in the sequence.

To Add an Output Sequence

1. Scan the Enter Sequence symbol (see Require Output Sequence, page 3-16).
2. Code I.D.

On the Symbology Charts on page A-1, find the symbology to which you want to apply the output sequence format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart (inside back cover).
3. Length

Specify what length (up to 9999 characters) of data output will be acceptable for this symbology. Scan the four digit data length from the Programming Chart. (Note: 50 characters is entered as 0050. 9999 is a universal number, indicating all lengths.) When calculating the length, you must count any programmed prefixes, suffixes, or formatted characters as part of the length (unless using 9999).
4. Character Match Sequences

On the ASCII Conversion Chart (Code Page 1252), page A-3, find the Hex value that represents the character(s) you want to match. Use the Programming Chart to read the alphanumeric combination that represents the ASCII characters. (99 is the Universal number, indicating all characters.)
5. End Output Sequence Editor

Scan $\boldsymbol{F} \boldsymbol{F}$ to enter an Output Sequence for an additional symbology, or Save to save your entries.

Other Programming Selections

- Discard

This exits without saving any Output Sequence changes.

Output Sequence Example

In this example, you are scanning Code 93, Code 128, and Code 39 bar codes, but you want the scanner to output Code 39 1st, Code 128 2nd, and Code 93 3rd, as shown below.
Note: Code 93 must be enabled to use this example.

You would set up the sequence editor with the following command line:

SEQBLK62999941FF6A999942FF69999943FF

The breakdown of the command line is shown below:
SEQBLKsequence editor start command code identifier for Code 39 code length that must match for Code 39, 9999 = all lengths start character match for Code 39, $41 \mathrm{~h}=$ "A" code identifier for Code 128 start character match for Code 128, $42 \mathrm{~h}=$ " B "

FF termination string for second code
code identifier for Code 93
9999 code length that must match for Code 93, $9999=$ all lengths
43
start character match for Code 93, 43h = "C"
FF termination string for third code
To program the previous example using specific lengths, you would have to count any programmed prefixes, suffixes, or formatted characters as part of the length. If you use the example on page 3-14, but assume a <CR> suffix and specific code lengths, you would use the following command line:

SEQBLK62001241FF6A001342FF69001243FF

The breakdown of the command line is shown below:
SEQBLKsequence editor start command
62 code identifier for Code 39
0012 A - Code 39 sample length (11) plus CR suffix (1) $=12$
41 start character match for Code 39, 41h = "A"
FF termination string for first code
6A code identifier for Code 128
0013 B - Code 128 sample length (12) plus CR suffix (1) $=13$
42 start character match for Code 128, $42 \mathrm{~h}=$ " B "
FF termination string for second code
69 code identifier for Code 93
0012 C - Code 93 sample length (11) plus CR suffix (1) $=12$
43 start character match for Code 93, 43h = "C"
FF termination string for third code

Output Sequence Editor

 SEQBLK
 Enter Sequence

Partial Sequence

If an output sequence operation is terminated before all your output sequence criteria are met, the bar code data acquired to that point is a "partial sequence."
Scan Discard Partial Sequence to discard partial sequences when the output sequence operation is terminated before completion. Scan Transmit Partial Sequence to transmit partial sequences. (Any fields in the sequence where no data match occurred will be skipped in the output.)

Transmit Partial Sequence

* Discard Partial Sequence

Require Output Sequence

When an output sequence is Required, all output data must conform to an edited sequence or the scanner will not transmit the output data to the host device. When it's On/Not Required, the scanner will attempt to get the output data to conform to an edited sequence but, if it cannot, the scanner transmits all output data to the host device as is.

When the output sequence is Off, the bar code data is output to the host as the scanner decodes it. Default = Off.
Note: This selection is unavailable when the Multiple Symbols Selection is turned on.

Multiple Symbols

When this programming selection is turned On, it allows you to read multiple symbols with a single press of the scanner's trigger. If you press and hold the trigger, aiming the scanner at a series of symbols, it reads unique symbols once, beeping (if turned on) for each read. The scanner attempts to find and decode new symbols as long as the trigger is pressed. When this programming selection is turned Off, the scanner will only read the symbol closest to the aiming beam. Default = Off.

No Read

With No Read turned On, the scanner notifies you if a code cannot be read. If using an EZConfig-Scanning Tool Scan Data Window (see page 8-3), an "NR" appears when a code cannot be read. If No Read is turned Off, the "NR" will not appear. Default $=$ Off.

If you want a different notation than "NR," for example, "Error," or "Bad Code," you can edit the output message (see Data Formatting beginning on page 5-1). The hex code for the No Read symbol is 9C.

Video Reverse

Video Reverse is used to allow the scanner to read bar codes that are inverted. The Video Reverse Off bar code below is an example of this type of bar code. Scan Video Reverse Only to read only inverted bar codes. Scan Video Reverse and Standard Bar Codes to read both types of codes.

Note: After scanning Video Reverse Only, menu bar codes cannot be read. You must scan Video Reverse Off or Video Reverse and Standard Bar Codes in order to read menu bar codes.

Note: Images downloaded from the unit are not reversed. This is a setting for decoding only.

YIDREV1.
Video Reverse Only

Video Reverse and Standard Bar
Codes

* Video Reverse Off

Working Orientation

Some bar codes are direction-sensitive. For example, KIX codes and OCR can misread when scanned sideways or upside down. Use the working orientation settings if your direction-sensitive codes will not usually be presented upright to the scanner. Default = Upright.

Upright:

Vertical, Top to Bottom: (Rotate CW 90°)

Upside Down:

Vertical, Bottom to Top: (Rotate CCW 90°)

ROTATNO.

* Upright

ROTATN2.
Upside Down

Data Editing

Prefix/Suffix Overview

When a bar code is scanned, additional information is sent to the host computer along with the bar code data. This group of bar code data and additional, user-defined data is called a "message string." The selections in this section are used to build the user-defined data into the message string.
Prefix and Suffix characters are data characters that can be sent before and after scanned data. You can specify if they should be sent with all symbologies, or only with specific symbologies. The following illustration shows the breakdown of a message string:

Points to Keep In Mind

- It is not necessary to build a message string. The selections in this chapter are only used if you wish to alter the default settings. Default prefix = None. Default suffix = None.
- A prefix or suffix may be added or cleared from one symbology or all symbologies.
- You can add any prefix or suffix from the ASCII Conversion Chart (Code Page 1252), beginning on page A-3, plus Code I.D. and AIM I.D.
- You can string together several entries for several symbologies at one time.
- Enter prefixes and suffixes in the order in which you want them to appear on the output.
- When setting up for specific symbologies (as opposed to all symbologies), the specific symbology ID value counts as an added prefix or suffix character.
- The maximum size of a prefix or suffix configuration is 200 characters, which includes header information.

To Add a Prefix or Suffix:

Step 1. Scan the Add Prefix or Add Suffix symbol (page 4-2).
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the symbology to which you want to apply the prefix or suffix. For example, for Code 128, Code ID is "j" and Hex ID is "6A".
Step 3. Scan the 2 hex digits from the Programming Chart inside the back cover of this manual or scan 9,9 for all symbologies.
Step 4. Determine the hex value from the ASCII Conversion Chart (Code Page 1252), beginning on page A-3, for the prefix or suffix you wish to enter.
Step 5. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
Step 6. Repeat Steps 4 and 5 for every prefix or suffix character.
Step 7. To add the Code I.D., scan 5, C, 8, $\mathbf{0}$.
To add AIM I.D., scan 5, C, 8, 1.
To add a backslash ($)$, scan 5, C, 5, C.
Note: To add a backslash (I) as in Step 7, you must scan 5C twice - once to create the leading backslash and then to create the backslash itself.

Step 8. Scan Save to exit and save, or scan Discard to exit without saving.
Repeat Steps 1-6 to add a prefix or suffix for another symbology.

Example: Add a Tab Suffix to All Symbologies

Step 1. Scan Add Suffix.

Step 2. Scan 9, 9 from the Programming Chart inside the back cover of this manual to apply this suffix to all symbologies.
Step 3. Scan 0, 9 from the Programming Chart inside the back cover of this manual. This corresponds with the hex value for a horizontal tab, shown in the ASCII Conversion Chart (Code Page 1252), beginning on page A-3.
Step 4. Scan Save, or scan Discard to exit without saving.

To Clear One or All Prefixes or Suffixes

You can clear a single prefix or suffix, or clear all prefixes/suffixes for a symbology. If you have been entering prefixes and suffixes for single symbologies, you can use Clear One Prefix (Suffix) to delete a specific character from a symbology. When you Clear All Prefixes (Suffixes), all the prefixes or suffixes for a symbology are deleted.
Step 1. Scan the Clear One Prefix or Clear One Suffix symbol.
Step 2. Determine the 2 digit Hex value from the Symbology Chart (included in the Symbology Charts, beginning on page A-1) for the symbology from which you want to clear the prefix or suffix.
Step 3. Scan the 2 digit hex value from the Programming Chart inside the back cover of this manual or scan 9,9 for all symbologies.
Your change is automatically saved.

To Add a Carriage Return Suffix to All Symbologies

Scan the following bar code if you wish to add a carriage return suffix to all symbologies at once. This action first clears all current suffixes, then programs a carriage return suffix for all symbologies.

Prefix Selections

Add Prefix

Suffix Selections

Function Code Transmit

When this selection is enabled and function codes are contained within the scanned data, the scanner transmits the function code to the terminal. Charts of these function codes are provided in Supported Interface Keys starting on page 7-3. When the scanner is in keyboard wedge mode, the scan code is converted to a key code before it is transmitted. Default = Enable.

Intercharacter, Interfunction, and Intermessage Delays

Some terminals drop information (characters) if data comes through too quickly. Intercharacter, interfunction, and intermessage delays slow the transmission of data, increasing data integrity.

Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each character of scanned data. Scan the Intercharacter Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intercharacter Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.
Note: Intercharacter delays are not supported in USB serial emulation.

User Specified Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed after the transmission of a particular character of scanned data. Scan the Delay Length bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

Next, scan the Character to Trigger Delay bar code, then the 2-digit hex value for the ASCII character that will trigger the delay ASCII Conversion Chart (Code Page 1252), beginning on page A-3.

To remove this delay, scan the Delay Length bar code, and set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Interfunction Delay

An interfunction delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each control character in the message string. Scan the Interfunction Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Interfunction Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Intermessage Delay

An intermessage delay of up to 5000 milliseconds (in 5 ms increments) may be placed between each scan transmission. Scan the Intermessage Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intermessage Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Data Formatting

Data Format Editor Introduction

You may use the Data Format Editor to change the scanner's output. For example, you can use the Data Format Editor to insert characters at certain points in bar code data as it is scanned. The selections in the following pages are used only if you wish to alter the output. Default Data Format setting = None.
Normally, when you scan a bar code, it is output automatically. However, when you create a format, you must use a "send" command (see Send Commands on page 5-3) within the format program to output data.

Multiple formats may be programmed into the scanner. They are stacked in the order in which they are entered. However, the following list presents the order in which formats are applied:

1. Specific Terminal ID, Actual Code ID, Actual Length
2. Specific Terminal ID, Actual Code ID, Universal Length
3. Specific Terminal ID, Universal Code ID, Actual Length
4. Specific Terminal ID, Universal Code ID, Universal Length
5. Universal Terminal ID, Actual Code ID, Actual Length
6. Universal Terminal ID, Actual Code ID, Universal Length
7. Universal Terminal ID, Universal Code ID, Actual Length
8. Universal Terminal ID, Universal Code ID, Universal Length

The maximum size of a data format configuration is 2000 bytes, which includes header information.
If a bar code is read that fails the first data format, the next data format, if there is one, will be used on the bar code data. If there is no other data format, the raw data is output.
If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

* Default Data Format

Add a Data Format

Step 1. Scan the Enter Data Format symbol (page 5-2).
Step 2. Select Primary/Alternate Format
Determine if this will be your primary data format, or one of 3 alternate formats. This allows you to save a total of 4 different data formats. To program your primary format, scan 0 using the Programming Chart inside the back cover of this manual. If you are programming an alternate format, scan $\mathbf{1 , 2}$, or $\mathbf{3}$, depending on which alternate format you are programming. (See "Primary/Alternate Data Formats" on page 5-12 for further information.)

Step 3. Terminal Type

Refer to Terminal ID Table (page 5-3) and locate the Terminal ID number for your PC. Scan three numeric bar codes on the inside back cover to program the scanner for your terminal ID (you must enter 3 digits). For example, scan 00 3 for an AT wedge.
Note: 099 indicates all terminal types.
Step 4. Code I.D.
In the Symbology Charts, beginning on page A-1, find the symbology to which you want to apply the data format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
Note: 99 indicates all symbologies.

Step 5. Length

Specify what length (up to 9999 characters) of data will be acceptable for this symbology. Scan the four digit data length from the Programming Chart inside the back cover of this manual. For example, 50 characters is entered as 0050.
Note: 9999 indicates all lengths.

Step 6. Editor Commands

Refer to Data Format Editor Commands (page 5-3). Scan the symbols that represent the command you want to enter. 94 alphanumeric characters may be entered for each symbology data format.
Step 7. Scan Save to save your data format, or Discard to exit without saving your changes.

Enter Data Format

Other Programming Selections

Clear One Data Format

This deletes one data format for one symbology. If you are clearing the primary format, scan $\mathbf{0}$ from the Programming Chart inside the back cover of this manual. If you are clearing an alternate format, scan 1, 2, or 3, depending on the format you are clearing. Scan the Terminal Type and Code I.D. (see Symbology Charts on page A-1), and the bar code data length for the specific data format that you want to delete. All other formats remain unaffected.

Clear all Data Formats

This clears all data formats.
Save to exit and save your data format changes.
Discard to exit without saving any data format changes.

Clear One Data Format

MNUSA.
Save

Discard

Terminal ID Table

Terminal	Model(s)	Terminal ID
USB	PC keyboard (HID)	124
	PC Keyboard (Japanese)	134
	Serial (COM driver required)	130
	HID POS	131
	USB SurePOS Handheld	128
	USB SurePOS Tabletop	129

Data Format Editor Commands

When working with the Data Format Editor, a virtual cursor is moved along your input data string. The following commands are used to both move this cursor to different positions, and to select, replace, and insert data into the final output.

Send Commands

Send all characters

F1 Include in the output message all of the characters from the input message, starting from current cursor position,
followed by an insert character. Syntax = F1xx where $x x$ stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Send a number of characters

F2 Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for "nn" characters or through the last character in the input message, followed by character "xx." Syntax = F2nnxx where nn stands for the numeric value (00-99) for the number of characters, and $x x$ stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F2 Example: Send a number of characters

```
    1234567890ABCDEFGHI,
```

Send the first 10 characters from the bar code above, followed by a carriage return. Command string: F2100D
F2 is the "Send a number of characters" command
10 is the number of characters to send
$0 D$ is the hex value for a CR
The data is output as: 1234567890

F2 and F1 Example: Split characters into 2 lines

Send the first 10 characters from the bar code above, followed by a carriage return, followed by the rest of the characters.
Command string: F2100DF10D
F2 is the "Send a number of characters" command
10 is the number of characters to send for the first line
0 D is the hex value for a CR
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR

The data is output as:
1234567890
ABCDEFGHIJ
<CR>

Send all characters up to a particular character

F3 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search character "ss," followed by an insert character. The cursor is moved forward to the "ss" character. Syntax = F3ssxx where ss stands for the search character's hex value for its ASCII code, and xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
F3 Example: Send all characters up to a particular character

Using the bar code above, send all characters up to but not including " D," followed by a carriage return.
Command string: F3440D
F3 is the "Send all characters up to a particular character" command
44 is the hex value for a 'D"
$0 D$ is the hex value for a CR
The data is output as:
1234567890ABC
<CR>

Send all but the last characters

E9 Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included. Syntax = E9nn where nn stands for the numeric value (00-99) for the number of characters that will not be sent at the end of the message.

Insert a character multiple times

F4 Send "xx" character " $n n$ " times in the output message, leaving the cursor in the current position. Syntax = F4xxnn where $x x$ stands for the insert character's hex value for its ASCII code, and nn is the numeric value (00-99) for the number of times it should be sent. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
E9 and F4 Example: Send all but the last characters, followed by 2 tabs

```
1234567B90ABCDEFGHIJ
```

Send all characters except for the last 8 from the bar code above, followed by 2 tabs.
Command string: E908F40902
E9 is the "Send all but the last characters" command
08 is the number of characters at the end to ignore
F4 is the "Insert a character multiple times" command
09 is the hex value for a horizontal tab
02 is the number of times the tab character is sent
The data is output as: 1234567890AB <tab><tab>

Insert symbology name

B3 Insert the name of the bar code's symbology in the output message, without moving the cursor. Only symbologies with a Honeywell ID are included (see Symbology Charts on page A-1). Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Insert bar code length

B4 Insert the bar code's length in the output message, without moving the cursor. The length is expressed as a numeric string and does not include leading zeroes.
B3 and B4 Example: Insert the symbology name and length

Send the symbology name and length before the bar code data from the bar code above. Break up these insertions with spaces. End with a carriage return.
Command string: B3F42001B4F42001F10D
B3 is the "Insert symbology name" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
B4 is the "Insert bar code length" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
Code128 201234567890 ABCDEFGHIJ
<CR>

Insert key strokes

B5 Insert a key stroke or combination of key strokes. Key strokes are dependent on your keyboard (see Unicode Key Maps on page A-10). Any key can be inserted, including arrows and functions. Syntax $=B 5 x x s s n n$ where $x x$ is the number of keys pressed (without key modifiers), ss is the key modifier from the table below, and $n \mathrm{n}$ is the key number from the Unicode Key Maps, page A-10.

Key Modifiers	
No Key Modifier	00
Shift Left	01
Shift Right	02
Alt Left	04
Alt Right	08
Control Left	10
Control Right	20

For example, B501021F inserts an "A" on a 104 key, U.S. style keyboard. B5 = the command, $01=$ number of keys pressed (without the key modifier), 02 is the key modifier for Shift Right, and 1F is the "a" key. If a lower case "a" were to be inserted, B501001F would be entered.
If there are three keystrokes, the syntax would change from B5xxssnn for one keystroke to B5xxssnnssnnssnn. An example that would insert "abc" is as follows: B503001F00320030F833.
Note: Key modifiers can be added together when needed. Example: Control Left+Shift Left $=11$.

Move Commands

Move the cursor forward a number of characters

F5 Move the cursor ahead "nn" characters from current cursor position.
Syntax $=F 5 n n$ where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved ahead.

F5 Example: Move the cursor forward and send the data

Move the cursor forward 3 characters, then send the rest of the bar code data from the bar code above. End with a carriage return.
Command string: F503F10D
F5 is the "Move the cursor forward a number of characters" command
03 is the number of characters to move the cursor
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
4567890ABCDEFGHIJ
<CR>

Move the cursor backward a number of characters

F6 Move the cursor back "nn" characters from current cursor position.
Syntax $=F 6 n n$ where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved back.
Move the cursor to the beginning
F7 Move the cursor to the first character in the input message. Syntax $=F 7$.
FE and F7 Example: Manipulate bar codes that begin with a 1

1234567B90AECDEFGHIJ
Search for bar codes that begin with a 1. If a bar code matches, move the cursor back to the beginning of the data and send 6 characters followed by a carriage return. Using the bar code above:
Command string: FE31F7F2060D
FE is the "Compare characters" command
31 is the hex value for 1
F7 is the "Move the cursor to the beginning" command
F2 is the "Send a number of characters" command
06 is the number of characters to send
$0 D$ is the hex value for a CR
The data is output as:
123456
<CR>

Move the cursor to the end

EA Move the cursor to the last character in the input message. Syntax $=E A$.

Search Commands

Search forward for a character

F8 Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F8xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F8 Example: Send bar code data that starts after a particular character

Search for the letter " D " in bar codes and send all the data that follows, including the "D." Using the bar code above:

Command string: F844F10D

F8 is the "Search forward for a character" command
44 is the hex value for " D "
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
DEFGHIJ
<CR>

Search backward for a character

F9 Search the input message backward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F9xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a string

B0 Search forward for "s" string from the current cursor position, leaving cursor pointing to "s" string. Syntax = B0nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B0000454657374 will search forward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B0 Example: Send bar code data that starts after a string of characters

1234567B90ABCDEFGHIJ
Search for the letters "FGH" in bar codes and send all the data that follows, including "FGH." Using the bar code above:
Command string: B00003464748F10D
BO is the "Search forward for a string" command
0003 is the string length (3 characters)
46 is the hex value for "F"
47 is the hex value for " G "
48 is the hex value for "H"
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
FGHIJ
<CR>

Search backward for a string

B1 Search backward for " s " string from the current cursor position, leaving cursor pointing to "s" string. Syntax = B1nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B1000454657374 will search backward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a non-matching character

E6 Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E6xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

E6 Example: Remove zeroes at the beginning of bar code data

This example shows a bar code that has been zero filled. You may want to ignore the zeroes and send all the data that follows. E6 searches forward for the first character that is not zero, then sends all the data after, followed by a carriage return. Using the bar code above:

Command string: E630F10D

E6 is the "Search forward for a non-matching character" command
30 is the hex value for 0
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
37692
<CR>

Search backward for a non-matching character

E7 Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E7xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Miscellaneous Commands

Suppress characters

FB Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands. When the FC command is encountered, the suppress function is terminated. The cursor is not moved by the FB command.
Syntax = FBnnxxyy . .zz where nn is a count of the number of suppressed characters in the list, and xxyy .. zz is the list of characters to be suppressed.
FB Example: Remove spaces in bar code data

This example shows a bar code that has spaces in the data. You may want to remove the spaces before sending the data. Using the bar code above:
Command string: FB0120F10D
FB is the "Suppress characters" command
01 is the number of character types to be suppressed
20 is the hex value for a space
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
34567890
<CR>

Stop suppressing characters

FC Disables suppress filter and clear all suppressed characters. Syntax $=F C$.
Replace characters
E4 Replaces up to 15 characters in the output message, without moving the cursor. Replacement continues until the E5 command is encountered. Syntax $=E 4 n n x x_{1} x x_{2} y y_{1} y y_{2} \ldots z z_{1} z z_{2}$ where $n n$ is the total count of the number of characters in the list (characters to be replaced plus replacement characters); x_{1} defines characters to be replaced and x_{2} defines replacement characters, continuing through z_{1} and $z z_{2}$.

E4 Example: Replace zeroes with CRs in bar code data

1234056780 . ВС
If the bar code has characters that the host application does not want included, you can use the E4 command to replace those characters with something else. In this example, you will replace the zeroes in the bar code above with carriage returns.
Command string: E402300DF10D
E 4 is the "Replace characters" command
02 is the total count of characters to be replaced, plus the replacement characters (0 is replaced by CR, so total characters =2)
30 is the hex value for 0
OD is the hex value for a CR (the character that will replace the 0)
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234
5678
ABC
<CR>

Stop replacing characters

E5 Terminates character replacement. Syntax = E5.

Compare characters

FE Compare the character in the current cursor position to the character "xx." If characters are equal, move the cursor forward one position. Syntax = FExx where xx stands for the comparison character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Compare string

B2 Compare the string in the input message to the string "s." If the strings are equal, move the cursor forward past the end of the string. Syntax = B2nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B2000454657374 will compare the string at the current cursor position with the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Check for a number

EC Check to make sure there is an ASCII number at the current cursor position. The format is aborted if the character is not numeric.

EC Example: Only output the data if the bar code begins with a number

If you want only data from bar codes that begin with a number, you can use EC to check for the number.

Command string: ECF10D

EC is the "Check for a number" command
F1 is the "Send all characters" command
$O D$ is the hex value for a $C R$

If this bar code is read, $\quad\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$
the next data format, if there is one, will be used on the data. If there
is no other format, the format fails and the raw data is output as AB1234.
If this bar code is read: $\quad \||||||||||||||||||||||| |$ the data is output as:
1234AB
1234AB
<CR>

Check for non-numeric character

ED Check to make sure there is a non-numeric ASCII character at the current cursor position. The format is aborted if the character is numeric.
ED Example: Only output the data if the bar code begins with a letter
If you want only data from bar codes that begin with a letter, you can use ED to check for the letter.

Command string: EDF10D

ED is the "Check for a non-numeric character" command
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR

If this bar code is read,

the next data format, if there is one, will be used on this data. If there
is no other format, the format fails and the raw data is output as 1234AB.
If this bar code is read: $\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$ the data is output as:
AB1234
<CR>

Insert a delay

EF Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. Syntax = EFnnnn where nnnn stands for the delay in 5 ms increments, up to 9999 . This command can only be used with keyboard emulation.a

Data Formatter

When Data Formatter is turned Off, the bar code data is output to the host as read, including prefixes and suffixes.

You may wish to require the data to conform to a data format you have created and saved. The following settings can be applied to your data format:

Data Formatter On, Not Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted.

Data Formatter On, Not Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. If a data format is not found for that symbol, the prefixes and suffixes are transmitted.

Data Format Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted. Any data that does not match your data format requirements generates an error tone and the data in that bar code is not transmitted. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.

Data Format Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. Any data that does not match your data format requirements generates an error tone. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.
Choose one of the following options. Default = Data Formatter On, Not Required, Keep Prefix/Suffix.

* Data Formatter On, Not Required,
Keep Prefix/Suffix

Data Formatter On,
Not Required,
Drop Prefix/Suffix

Data Format Required, Keep Prefix/Suffix

Data Format Required, Drop Prefix/Suffix

Data Format Non-Match Error Tone

When a bar code is encountered that doesn't match your required data format, the scanner normally generates an error tone. However, you may want to continue scanning bar codes without hearing the error tone. If you scan the Data Format Non-Match Error Tone Off bar code, data that doesn't conform to your data format is not transmitted, and no error tone will sound. If you wish to hear the error tone when a non-matching bar code is found, scan the Data Format Non-Match Error Tone On bar code. Default = Data Format Non-Match Error Tone On.

* Data Format Non-Match Error

Tone On

Data Format Non-Match Error Tone Off

Primary/Alternate Data Formats

You can save up to four data formats, and switch between these formats. Your primary data format is saved under $\mathbf{0}$. Your other three formats are saved under 1, 2, and 3. To set your device to use one of these formats, scan one of the bar codes below.

Data Format 1

ALTFNM2.
Data Format 2

ALTFNM3.
Data Format 3

Single Scan Data Format Change

You can also switch between data formats for a single scan. The next bar code is scanned using an alternate data format, then reverts to the format you have selected above (either Primary, 1, 2, or 3).
For example, you may have set your device to the data format you saved as Data Format 3. You can switch to Data Format 1 for a single trigger press by scanning the Single Scan-Data Format 1 bar code below. The next bar code that is scanned uses Data Format 1, then reverts back to Data Format 3.

Single Scan-Primary
Data Format

Single Scan-Data Format 1

Single Scan-Data Format 3

Symbologies

This programming section contains the following menu selections. Refer to Chapter 9 for settings and defaults.

- All Symbologies
- Aztec Code
- China Post (Hong Kong 2 of 5)
- Chinese Sensible (Han Xin) Code
- Codabar
- Codablock A
- Codablock F
- Code 11
- Code 128
- Code 32 Pharmaceutical (PARAF)
- Code 39
- Code 93
- Data Matrix
- EAN/JAN-13
- EAN/JAN-8
- GS1 Composite Codes
- GS1 DataBar Expanded
- GS1 DataBar Limited
- GS1 DataBar Omnidirectional
- GS1 Emulation
- GS1-128
- Interleaved 2 of 5
- Korea Post
- Matrix 2 of 5
- MaxiCode
- MicroPDF417
- MSI
- NEC 2 of 5
- Postal Codes - 2D
- Postal Codes - Linear
- PDF417
- GS1 DataBar Omnidirectional
- QR Code
- Straight 2 of 5 IATA (two-bar start/stop)
- Straight 2 of 5 Industrial (three-bar start/stop)
- TCIF Linked Code 39 (TLC39)
- Telepen
- Trioptic Code
- UPC-A
- UPC-A/EAN-13 with Extended Coupon Code
- UPC-E0
- UPC-E1

All Symbologies

If you want to decode all the symbologies allowable for your scanner, scan the All Symbologies On code. If on the other hand, you want to decode only a particular symbology, scan All Symbologies Off followed by the On symbol for that particular symbology. Default = All Symbologies Off.

All Symbologies On

Note: When All Symbologies On is scanned, 2D Postal Codes are not enabled. 2D Postal Codes must be enabled separately.

Message Length Description

You are able to set the valid reading length of some of the bar code symbologies. If the data length of the scanned bar code doesn't match the valid reading length, the scanner will issue an error tone. You may wish to set the same value for minimum and maximum length to force the scanner to read fixed length bar code data. This helps reduce the chances of a misread.
EXAMPLE: Decode only those bar codes with a count of 9-20 characters.
Min. length $=09 \mathrm{Max}$. length $=20$

EXAMPLE: Decode only those bar codes with a count of 15 characters.
Min. length $=15 \mathrm{Max}$. length $=15$
For a value other than the minimum and maximum message length defaults, scan the bar codes included in the explanation of the symbology, then scan the digit value of the message length and Save bar codes on the Programming Chart inside the back cover of this manual. The minimum and maximum lengths and the defaults are included with the respective symbologies.

Codabar

<Default All Codabar Settings>

 CBRDFT.

Codabar On/Off

Codabar Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default = Don't Transmit.

Codabar Check Character

Codabar check characters are created using different "modulos." You can program the scanner to read only Codabar bar codes with Modulo 16 check characters. Default = No Check Character.

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate and Transmit, the scanner will only read Codabar bar codes printed with a check character, and will transmit this character at the end of the scanned data.
When Check Character is set to Validate, but Don't Transmit, the unit will only read Codabar bar codes printed with a check character, but will not transmit the check character with the scanned data.

||
 CBPCLO 2

Validate Modulo 16 and Transmit

Codabar Concatenation

Codabar supports symbol concatenation. When you enable concatenation, the scanner looks for a Codabar symbol having a " D " start character, adjacent to a symbol having a "D" stop character. In this case the two messages are concatenated into one with the "D" characters omitted.

Select Require to prevent the scanner from decoding a single "D" Codabar symbol without its companion. This selection has no effect on Codabar symbols without Stop/Start D characters.

CBRCOTD.

* Off

Codabar Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-60$. Minimum Default $=4$, Maximum Default $=60$.

CBRMIN.
Minimum Message Length

Code 39

< Default All Code 39 Settings >

Code 39 On/Off

Code 39 Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default = Don't Transmit.

Code 39 Check Character

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate, but Don't Transmit, the unit only reads Code 39 bar codes printed with a check character, but will not transmit the check character with the scanned data.
When Check Character is set to Validate and Transmit, the scanner only reads Code 39 bar codes printed with a check character, and will transmit this character at the end of the scanned data. Default = No Check Character.

* No Check Character

Validate, but Don't Transmit

Validate and Transmit

Code 39 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-48$. Minimum Default $=0$, Maximum Default $=48$.

Maximum Message Length

Code 39 Append

This function allows the scanner to append the data from several Code 39 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 39 bar code with the append trigger character(s), it buffers Code 39 bar codes until it reads a Code 39 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

On

Code 32 Pharmaceutical (PARAF)

Code 32 Pharmaceutical is a form of the Code 39 symbology used by Italian pharmacies. This symbology is also known as PARAF.

Note: Trioptic Code (page 6-33) must be turned off while scanning Code 32 Pharmaceutical codes.

On

Full ASCII

If Full ASCII Code 39 decoding is enabled, certain character pairs within the bar code symbol will be interpreted as a single character. For example: \$V will be decoded as the ASCII character SYN, and /C will be decoded as the ASCII character \#. Default = Off.

NUL \%U	DLE \$P	SP	SPACE	0	0	@	\%V	P	P		\%W	p	+P
SOH \$A	DC1 \$Q	!	/A	1	1	A	A	Q	Q	a	+A	q	+Q
STX \$B	DC2 \$R	"	/B	2	2	B	B	R	R	b	+B	r	+R
ETX \$C	DC3 \$S	\#	/C	3	3	C	C	S	S	c	+C	s	+S
EOT \$D	DC4 \$T	\$	/D	4	4	D	D	T	T	d	+D	t	+T
ENQ \$E	NAK \$U	\%	/E	5	5	E	E	U	U	e	+E	u	+U
ACK \$F	SYN \$V	\&	/F	6	6	F	F	V	V	f	+F	v	+V
BEL \$G	ETB \$W		/G	7	7	G	G	W	W	g	+G	w	+W
BS \$H	CAN \$X	(/H	8	8	H	H	X	X	h	+H	x	+X
HT \$	EM \$Y)	/I	9	9	1	1	Y	Y	i	+1	y	+Y
LF \$J	SUB \$Z	*	/J		/Z	J	J	Z	Z	j	+J	z	+Z
VT \$K	ESC \%A	+	/K	,	\%F	K	K	[\%K	k	+K	\{	\%P
FF \$L	FS \%B		/L	<	\%G	L	L	\}	\%L	I	+L	I	\%Q
CR \$M	GS \%C	-	-	$=$	\%H	M	M]	\%M	m	+M	\}	\%R
SO \$N	RS \%D		.	>	\%	N	N	\wedge	\%N	n	+N	\sim	\%S
SI \$O	US \%E	/	/O	?	\%J	0	0	-	\%O	\bigcirc	+O	DE	\%T

Character pairs / M and $/ \mathrm{N}$ decode as a minus sign and period respectively.
Character pairs /P through / Y decode as 0 through 9.

Code 39 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Interleaved 2 of 5

< Default All Interleaved 2 of 5 Settings >

Interleaved 2 of 5 On/Off

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads Interleaved 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads Interleaved 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default $=$ No Check Digit.

Interleaved 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

125 MAX
Maximum Message Length

NEC 2 of 5

< Default All NEC 2 of 5 Settings >

NEC 2 of 5 On/Off

 N25ENA1.
 * On

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads NEC 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads NEC 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default $=$ No Check Digit.

N 25 Cl 21
Validate, but Don't Transmit

6-8

NEC 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Code 93

< Default All Code 93 Settings >

Code 93 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

C93M|N.
Minimum Message Length

Code 93 Append

This function allows the scanner to append the data from several Code 93 bar codes together before transmitting them to the host computer. When this function is enabled, the scanner stores those Code 93 bar codes that start with a space (excluding the start and stop symbols), and does not immediately transmit the data. The scanner stores the data in the order in which the bar codes are read, deleting the first space from each. The scanner transmits the appended data when it reads a Code 93 bar code that starts with a character other than a space. Default = Off.

Code 93 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Straight 2 of 5 Industrial (three-bar start/stop)

<Default All Straight 2 of 5 Industrial Settings>

Straight 2 of 5 Industrial On/Off

 R25ENA1.
 On

Straight 2 of 5 Industrial Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Straight 2 of 5 IATA (two-bar start/stop)

<Default All Straight 2 of 5 IATA Settings>

Straight 2 of 5 IATA On/Off

 A25ENA1.
 On

Straight 2 of 5 IATA Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Matrix 2 of 5

<Default All Matrix 2 of 5 Settings>

Matrix 2 of 5 On/Off

 On

Matrix 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Code 11

<Default All Code 11 Settings>

Check Digits Required

This option sets whether 1 or 2 check digits are required with Code 11 bar codes. Default = Two Check Digits.

C 11 CK 1

* Two Check Digits

Code 11 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Code 128

<Default All Code 128 Settings>

Code 128 On/Off

 128ENA.

* On

ISBT 128 Concatenation

In 1994 the International Society of Blood Transfusion (ISBT) ratified a standard for communicating critical blood information in a uniform manner. The use of ISBT formats requires a paid license. The ISBT 128 Application Specification describes 1) the critical data elements for labeling blood products, 2) the current recommendation to use Code 128 due to its high degree of security and its space-efficient design, 3) a variation of Code 128 that supports concatenation of neighboring symbols, and 4) the standard layout for bar codes on a blood product label. Use the bar codes below to turn concatenation on or off. Default =Off.

Code 128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

128 MIN .
Minimum Message Length

Maximum Message Length

Code 128 Append

This function allows the scanner to append the data from several Code 128 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 128 bar code with the append trigger character(s), it buffers Code 128 bar codes until it reads a Code 128 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default $=$ On.

Code 128 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

GS1-128

<Default All GS1-128 Settings>

GS1-128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=1$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Telepen

<Default All Telepen Settings>

Telepen On/Off

 TELENA1.
 On

Telepen Output

Using AIM Telepen Output, the scanner reads symbols with start/stop pattern 1 and decodes them as standard full ASCII (start/stop pattern 1). When Original Telepen Output is selected, the scanner reads symbols with start/stop pattern 1 and decodes them as compressed numeric with optional full ASCII (start/stop pattern 2). Default = AIM Telepen Output.

Telepen Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths =1-60. Minimum Default $=1$, Maximum Default $=60$.

Minimum Message Length

Maximum Message Length

UPC-A

<Default All UPC-A Settings>

 UPADFT.

UPC-A On/Off

 * On

Note: To convert UPC-A bar codes to EAN-13, see Convert UPC-A to EAN-13 on page 6-25.

UPC-A Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-A Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but the unit can be programmed so it will not transmit it. Default $=$ On.

UPC-A Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-A data.
Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPC-A Addenda Required

When Required is scanned, the scanner will only read UPC-A bar codes that have addenda. You must then turn on a 2 or 5 digit addenda listed on page 6-20. Default = Not Required.

Addenda Timeout

You can set a time during which the scanner looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-65535 milliseconds) by scanning digits from the Programming Chart, then scanning Save. Default $=100$.
Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

Addenda Timeout

UPC-A Addenda Separator

When this feature is on, there is a space between the data from the bar code and the data from the addenda. When turned off, there is no space. Default $=$ On.

* On

Off

UPC-A/EAN-13 with Extended Coupon Code

Use the following codes to enable or disable UPC-A and EAN-13 with Extended Coupon Code. When left on the default setting (Off), the scanner treats Coupon Codes and Extended Coupon Codes as single bar codes.
If you scan the Allow Concatenation code, when the scanner sees the coupon code and the extended coupon code in a single scan, it transmits both as separate symbologies. Otherwise, it transmits the first coupon code it reads.

If you scan the Require Concatenation code, the scanner must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read. Default = Off.

Coupon GS1 DataBar Output

If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. Scan the GS1 Output On code below to scan and output only the GS1 DataBar code data. Default = GS1 Output Off.

CPNGS11.
GS1 Output On

UPC-EO On/Off

Most U.P.C. bar codes lead with the 0 number system. To read these codes, use the UPC-E0 On selection. If you need to read codes that lead with the 1 number system, use UPC-E1 (page 6-24). Default = On.

UPEENO1.

* UPC-EO On

UPC-EO Expand

UPC-E Expand expands the UPC-E code to the 12 digit, UPC-A format. Default = Off.

On

UPC-EO Addenda Required

When Required is scanned, the scanner will only read UPC-E bar codes that have addenda. Default = Not Required.

Addenda Timeout

You can set a time during which the scanner looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-65535 milliseconds) by scanning digits from the Programming Chart, then scanning Save. Default = 100 .
Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

UPC-EO Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

UPC-EO Check Digit

Check Digit specifies whether the check digit should be transmitted at the end of the scanned data or not. Default =On.

UPC-EO Leading Zero

This feature allows the transmission of a leading zero (0) at the beginning of scanned data. To prevent transmission, scan Off. Default = On.

UPENSX1

* On

UPC-EO Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-E data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPC-E1

Most U.P.C. bar codes lead with the 0 number system. For these codes, use UPC-E0 (page 6-22). If you need to read codes that lead with the 1 number system, use the UPC-E1 On selection. Default = Off.

UPEEN11.
UPC-E1 On

* UPC-E1 Off

EAN/JAN-13 On/Off

 E13ENA.
 * On

Convert UPC-A to EAN-13

When UPC-A Converted to EAN-13 is selected, UPC-A bar codes are converted to 13 digit EAN-13 codes by adding a zero to the front. When Do not Convert UPC-A is selected, UPC-A codes are read as UPC-A.

UPC-A Converted to EAN-13

EAN/JAN-13 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-13 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-13 data. Default = Off for both 2 Digit and 5 Digit Addenda.

EAN/JAN-13 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-13 bar codes that have addenda. Default = Not Required.

Addenda Timeout

You can set a time during which the scanner looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-65535 milliseconds) by scanning digits from the Programming Chart, then scanning Save. Default $=100$.
Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

DLYADD.
Addenda Timeout

EAN/JAN-13 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default = On.

Note: If you want to enable or disable EAN13 with Extended Coupon Code, refer to UPC-A/EAN-13 with Extended Coupon Code (page 6-21).

ISBN Translate

When On is scanned, EAN-13 Bookland symbols are translated into their equivalent ISBN number format. Default = Off.

EAN/JAN-8

<Default All EAN/JAN-8 Settings>

EAN/JAN-8 On/Off

 * On

EAN/JAN-8 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-8 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-8 data. Default = Off for both 2 Digit and 5 Digit Addenda.

EABAD20.

* 2 Digit Addenda Off

EAN/JAN-8 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-8 bar codes that have addenda. Default = Not Required.

* Not Required

Addenda Timeout

You can set a time during which the scanner looks for an addenda. If an addenda is not found within this time period, the data can be either transmitted or discarded, based on the setting you are using for UPC-A Addenda Required. Set the length (in milliseconds) for this timeout by scanning the bar code below, then setting the timeout (from 0-65535 milliseconds) by scanning digits from the Programming Chart, then scanning Save. Default = 100 .
Note: The Addenda Timeout setting is applied to all addenda and coupon code searches.

EAN/JAN-8 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

* On

MSI

<Default All MSI Settings>

MSI On/Off

MSI Check Character

Different types of check characters are used with MSI bar codes. You can program the scanner to read MSI bar codes with Type 10 check characters. Default = Validate Type 10, but Don't Transmit.
When Check Character is set to Validate Type 10/11 and Transmit, the scanner will only read MSI bar codes printed with the specified type check character(s), and will transmit the character(s) at the end of the scanned data.
When Check Character is set to Validate Type 10/11, but Don't Transmit, the unit will only read MSI bar codes printed with the specified type check character(s), but will not transmit the check character(s) with the scanned data.

* Validate Type 10, but Don't Transmit

Disable MSI Check Characters

MSI Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=4-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

6-31

GS1 DataBar Omnidirectional

< Default All GS1 DataBar Omnidirectional Settings >

RSSDFT.
GS1 DataBar Omnidirectional On/Off

GS1 DataBar Limited
< Default All GS1 DataBar Limited Settings >

GS1 DataBar Limited On/Off

GS1 DataBar Expanded

< Default All GS1 DataBar Expanded Settings >

 RSEDFT.

GS1 DataBar Expanded On/Off

RSEENA.

* On

GS1 DataBar Expanded Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=4-74$. Minimum Default $=4$, Maximum Default $=74$.

Minimum Message Length

Trioptic Code

Note: If you are going to scan Code 32 Pharmaceutical codes (page 6-5), Trioptic Code must be off.
Trioptic Code is used for labeling magnetic storage media.

Codablock A

<Default All Codablock A Settings>

 cBADFT.

Codablock A On/Off

On

Codablock A Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-600$. Minimum Default $=1$, Maximum Default $=600$.

Maximum Message Length

Codablock F

<Default All Codablock F Settings>

Codablock F On/Off

Codablock F Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2048$. Minimum Default $=1$, Maximum Default $=2048$.

Minimum Message Length

PDF417

< Default All PDF417 Settings >

PDF417 On/Off

PDFENA.

* On

PDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2750$. Minimum Default $=1$, Maximum Default $=2750$.

Minimum Message Length

MacroPDF417

MacroPDF417 is an implementation of PDF417 capable of encoding very large amounts of data into multiple PDF417 bar codes. When this selection is enabled, these multiple bar codes are assembled into a single data string. Default =On.

MicroPDF417

< Default All MicroPDF417 Settings >

 MPDDFT.

MicroPDF417 On/Off

 MPDENA1.
 On

MicroPDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-366$. Minimum Default $=1$, Maximum Default $=366$.

Minimum Message Length

Maximum Message Length

GS1 Composite Codes

Linear codes are combined with a unique 2D composite component to form a new class called GS1 Composite symbology. GS1 Composite symbologies allow for the co-existence of symbologies already in use. Default = Off.

On

UPC/EAN Version

Scan the UPC/EAN Version On bar code to decode GS1 Composite symbols that have a U.P.C. or an EAN linear component. (This does not affect GS1 Composite symbols with a GS1-128 or GS1 linear component.) Default = UPC/EAN Version Off.

* UPC/EAN Version Off

Note: If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. See Coupon GS1 DataBar Output (page 6-21) for further information.

GS1 Composite Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-2435$. Minimum Default $=1$, Maximum Default $=2435$.

Minimum Message Length

Maximum Message Length

GS1 Emulation

The scanner can automatically format the output from any GS1 data carrier to emulate what would be encoded in an equivalent GS1-128 or GS1 DataBar symbol. GS1 data carriers include UPC-A and UPC-E, EAN-13 and EAN-8, ITF-14, GS1-128, and GS1-128 DataBar and GS1 Composites. (Any application that accepts GS1 data can be simplified since it only needs to recognize one data carrier type.)
If GS1-128 Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If GS1 DataBar Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-DataBar AIM ID,]em (see Symbology Charts on page A-1).
If GS1 Code Expansion Off is scanned, retail code expansion is disabled, and UPC-E expansion is controlled by the UPC-E0 Expand (page 6-22) setting. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If EAN8 to EAN13 Conversion is scanned, all EAN8 bar codes are converted to EAN13 format.
Default $=$ GS1 Emulation Off.

EANEMU1.
GS1-128 Emulation

TCIF Linked Code 39 (TLC39)

This code is a composite code since it has a Code 39 linear component and a MicroPDF417 stacked code component. All bar code readers are capable of reading the Code 39 linear component. The MicroPDF417 component can only be decoded if TLC39 On is selected. The linear component may be decoded as Code 39 even if TLC39 is off. Default = Off.

QR Code

QR Code On/Off

This selection applies to both QR Code and Micro QR Code.

QR Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-7089$. Minimum Default $=1$, Maximum Default $=7089$.

QR Code Append

This function allows the scanner to append the data from several QR Code bar codes together before transmitting them to the host computer. When the scanner encounters an QR Code bar code with the append trigger character(s), it buffers the number of QR Code bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default = On.

Off

QR Code Page

QR Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Data Matrix

< Default All Data Matrix Settings >

Data Matrix On/Off

Data Matrix Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-3116$. Minimum Default $=1$, Maximum Default $=3116$.

Minimum Message Length

Maximum Message Length

Data Matrix Append

This function allows the scanner to append the data from several Data Matrix bar codes together before transmitting them to the host computer. When the scanner encounters an Data Matrix bar code with the append trigger character(s), it buffers the number of Data Matrix bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

Off

Data Matrix Code Page

Data Matrix Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

MaxiCode

< Default All MaxiCode Settings >

MaxiCode On/Off

MaxiCode Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-150$. Minimum Default $=1$, Maximum Default $=150$.

Minimum Message Length

Aztec Code

< Default All Aztec Code Settings >

Aztec Code On/Off

 AZTENA.
 * On

Aztec Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-3832$. Minimum Default $=1$, Maximum Default $=3832$.

Minimum Message Length

Aztec Append

This function allows the scanner to append the data from several Aztec bar codes together before transmitting them to the host computer. When the scanner encounters an Aztec bar code with the append trigger character(s), it buffers the number of Aztec bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default =On.

Aztec Code Page

Aztec Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-8), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Chinese Sensible (Han Xin) Code

< Default All Han Xin Settings >

Han Xin Code On/Off

Han Xin Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=1-7833$. Minimum Default $=1$, Maximum Default $=7833$.

Minimum Message Length

Maximum Message Length

Postal Codes - 2D

The following lists the possible 2D postal codes, and 2D postal code combinations that are allowed. Only one 2D postal code selection can be active at a time. If you scan a second 2D postal code selection, the first selection is overwritten. Default = 2D Postal Codes Off.

Single 2D Postal Codes:

POSTALSO.
Canadian Post On

POSTAL4. KIX Post On

Planet Code On
Also see Planet Code
Check Digit, page 6-48.

POSTALG.
Postnet On
Also see Postnet Check
Digit, page 6-48.

Combination 2D Postal Codes:

Intelligent Mail Bar Code and Postnet with B and B' Fields On

POSTAL17.
Postal-4i and
Intelligent Mail Bar Code On

POSTAL18

POSTAL13.
Planet Code and
Postal-4i On

POSTAL15
Planet Code and Intelligent Mail Bar Code On

Planet Code,
Postnet, and
Intelligent Mail Bar Code On

Postnet,
Postal-4i, and
Intelligent Mail Bar Code On

POSTAL28.
Planet Code,

Planet Code Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Planet Code data. Default = Don't Transmit.

PLNCKO

* Don't Transmit Check Digit

Postnet Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Postnet data. Default = Don't Transmit.

Australian Post Interpretation

This option controls what interpretation is applied to customer fields in Australian 4-State symbols.
Bar Output lists the bar patterns in "0123" format.
Numeric \mathbf{N} Table causes that field to be interpreted as numeric data using the N Table.
Alphanumeric C Table causes the field to be interpreted as alphanumeric data using the C Table. Refer to the Australian Post Specification Tables.

Combination \mathbf{C} and \mathbf{N} Tables causes the field to be interpreted using either the \mathbf{C} or \mathbf{N} Tables.

AUSINTS.
Combination \mathbf{C} and N Tables

Postal Codes - Linear

The following lists linear postal codes. Any combination of linear postal code selections can be active at a time.

China Post (Hong Kong 2 of 5)

<Default All China Post (Hong Kong 2 of 5) Settings>

China Post (Hong Kong 2 of 5) On/Off

China Post (Hong Kong 2 of 5) Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

$\mathrm{CPCM} \| \mathrm{N}$.
Minimum Message Length

CPCMAX
Maximum Message Length

Korea Post

<Default All Korea Post Settings>

Korea Post

Korea Post Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 6-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=48$.

Maximum Message Length

Korea Post Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data. Default = Don't Transmit.

Transmit Check Digit

* Don't Transmit Check Digit

Interface Keys

Keyboard Function Relationships

The following Keyboard Function Code, Hex/ASCII Value, and Full ASCII "CTRL"+ relationships apply to all terminals that can be used with the scanner. Refer to page 2-12 enable Control + X (Control + ASCII) Mode.

Function Code	HEX/ASCII Value	Full ASCII (CTRL + X Mode)
NUL	00	@
SOH	01	A
STX	02	B
ETX	03	C
EOT	04	D
ENQ	05	E
ACK	06	F
BEL	07	G
BS	08	H
HT	09	I
LF	OA	J
VT	OB	K
FF	OC	L
CR	OD	M
SO	OE	N
SI	OF	0
DLE	10	P
DC1	11	Q
DC2	12	R
DC3	13	S
DC4	14	T
NAK	15	U
SYN	16	V
ETB	17	W
CAN	18	X
EM	19	Y
SUB	1A	Z
ESC	1B	[
FS	1 C	1
GS	1D]
RS	1E	\wedge
US	1F	-

The last five characters in the Full ASCII "CTRL"+ column ($[\backslash] 6-$), apply to US only. The following chart indicates the equivalents of these five characters for different countries.

Country	Codes				
United States	$[$	\backslash	$]$	6	-
Belgium	$[$	$<$	$]$	6	-
Scandinavia	8	$<$	9	6	-
France	\wedge	8	$\$$	6	$=$
Germany		\tilde{A}	+	6	-
Italy	\backslash	+	6	-	
Switzerland		$<$	\ldots	6	-
United Kingdom	$[$	\varnothing	$]$	6	-

Country	Codes				
Denmark	8	1	9	6	-
Norway	8	1	9	6	-
Spain	$[$	1	$]$	6	-

Supported Interface Keys

ASCII	HEX	IBM PC/AT and Compatibles, USB PC Keyboard
NUL	00	Reserved
SOH	01	Enter (KP)
STX	02	Cap Lock
ETX	03	ALT make
EOT	04	ALT break
ENQ	05	CTRL make
ACK	06	CTRL break
BEL	07	CR/Enter
BS	08	Reserved
HT	09	Tab
LF	OA	Reserved
VT	OB	Tab
FF	OC	Delete
CR	OD	CR/Enter
SO	OE	Insert
SI	OF	Escape
DLE	10	F11
DC1	11	Home
DC2	12	Print
DC3	13	Back Space
DC4	14	Back Tab
NAK	15	F12
SYN	16	F1
ETB	17	F2
CAN	18	F3
EM	19	F4
SUB	1A	F5
ESC	1B	F6
FS	1 C	F7
GS	1D	F8
RS	1E	F9
US	1F	F10
DEL	7F	

Utilities

To Add a Test Code I.D. Prefix to All Symbologies

This selection allows you to turn on transmission of a Code I.D. before the decoded symbology. (See the Symbology Charts, beginning on page A-1) for the single character code that identifies each symbology.) This action first clears all current prefixes, then programs a Code I.D. prefix for all symbologies. This is a temporary setting that will be removed when the unit is power cycled.

Add Code I.D. Prefix to
All Symbologies (Temporary)

Show Decoder Revision

Scan the bar code below to output the decoder revision.

Show Decoder Revision

Show Scan Driver Revision

Scan the bar code below to output the scan driver revision. The scan driver controls image capture.

Show Scan Driver Revision

Show Software Revision

Scan the bar code below to output the current software revision, unit serial number, and other product information for the scanner.

Show Software Revision

Show Data Format

Scan the bar code below to show current data format settings.

Data Format Settings

Test Menu

When you scan the Test Menu On code, then scan a programming code in this manual, the scanner displays the content of a programming code. The programming function will still occur, but in addition, the content of that programming code is output to the terminal.

Note: This feature should not be used during normal scanner operation.

On

TotalFreedom

TotalFreedom is an open system architecture that makes it possible for you create applications that reside on your scanner. Decoding apps and Data Formatting apps can be created using TotalFreedom. For further information about TotalFreedom, go to our website at www.honeywellaidc.com.

Application Plug-Ins (Apps)

Any apps that you are using can be turned off or on by scanning the following bar codes. Apps are stored in groups: Decoding, and Formatting. You can enable and disable these groups of apps by scanning that group's On or Off bar code below. You can also scan the List Apps bar code to output a list of all your apps.

Formatting Apps On

Note: You must reset your device in order for the apps setting to take effect.

EZConfig-Scanning Introduction

EZConfig-Scanning provides a wide range of PC-based programming functions that can be performed on a scanner connected to your PC's COM port. EZConfig-Scanning allows you to download upgrades to the scanner's firmware, change programmed parameters, and create and print programming bar codes. Using EZConfig-Scanning, you can even save/open the programming parameters for a scanner. This saved file can be e-mailed or, if required, you can create a single bar code that contains all the customized programming parameters and mail or fax that bar code to any location. Users in other locations can scan the bar code to load in the customized programming.

EZConfig-Scanning Operations

The EZConfig-Scanning software performs the following operations:

Scan Data

Scan Data allows you to scan bar codes and display the bar code data in a window. Scan Data lets you send serial commands to the scanner and receive scanner response that can be seen in the Scan Data window. The data displayed in the Scan Data window can either be saved in a file or printed.

Configure

Configure displays the programming and configuration data of the scanner. The scanner's programming and configuration data is grouped into different categories. Each category is displayed as a tree item under the "Configure" tree node in the application explorer. When one of these tree nodes is clicked, the right-hand side is loaded with the parameters' form belonging to that particular category. The "Configure" tree option has all the programming and configuration parameters specified for a scanner. You can set or modify these parameters as required. You can later write the modified settings to the scanner, or save them to a dcf file.

Imaging

Imaging provides all the image-related functions that a 2D Scanner can perform. You can capture an image using the current settings, and the image will be displayed in an image window. Images captured from the scanner can be saved to files in different image formats. You can modify the image settings and save the image settings to an INI file, which can be loaded later to capture new images. Imaging also lets you preview the images continuously captured by the scanner.

Installing EZConfig-Scanning from the Web

Note: EZConfig-Scanning requires .NET software. If .NET is not installed on your PC, you will be prompted to install it during the EZConfig-Scanning installation.

1. Access the Honeywell web site at www.honeywellaidc.com
2. Click on the Resources tab. Select Software.
3. Click on the dropdown for Select Product Number. Click on 4850DR.
4. Click on the listing for EZConfig-Scanning.
5. When prompted, select Save File, and save the files to the c:Iwindowsltemp directory.
6. Once you have finished downloading the file, exit the web site.
7. Using Explorer, go to the c:Iwindowsltemp file.
8. Double click on the Setup.exe file. Follow the screen prompts to install the EZConfig-Scanning program.
9. If you've selected the defaults during installation, you can click on Start Menu-All Programs-Honeywell-EZConfigScanning.

Resetting the Defaults

If you want the factory default settings restored to your device, scan the Activate Custom Defaults bar code below. This is the recommended default bar code for most users. It resets the device to the custom default settings. If there are no custom defaults, it will reset the device to the factory default settings.

Activate Custom Defaults
The Menu Commands, beginning on page 9-4 list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

Serial Programming Commands

The serial programming commands can be used in place of the programming bar codes. Both the serial commands and the programming bar codes will program the scanner. For complete descriptions and examples of each serial programming command, refer to the corresponding programming bar code in this manual.

The device must be set to an RS232 interface (see page 2-1). The following commands can be sent via a PC COM port using terminal emulation software.

Conventions

The following conventions are used for menu and query command descriptions:
parameterA label representing the actual value you should send as part of a command.
[option] An optional part of a command.
\{Data\} Alternatives in a command.
bold Names of menus, menu commands, buttons, dialog boxes, and windows that appear on the screen.

Menu Command Syntax

Menu commands have the following syntax (spaces have been used for clarity only):
Prefix [:Name:] Tag SubTag \{Data\} [, SubTag \{Data\}] [; Tag SubTag \{Data\}] [...] Storage
Prefix Three ASCII characters: SYN M CR (ASCII 22,77,13).
Tag A 3 character case-insensitive field that identifies the desired menu command group. For example, all Code 128 configuration settings are identified with a Tag of 128.
SubTag A 3 character case-insensitive field that identifies the desired menu command within the tag group. For example, the SubTag for the Code 128 defaults is DFT.
Data The new value for a menu setting, identified by the Tag and SubTag.
Storage A single character that specifies the storage table to which the command is applied. An exclamation point (!) performs the command's operation on the device's volatile menu configuration table. A period (.) performs the command's operation on the device's non-volatile menu configuration table. Use the non-volatile table only for semi-permanent changes you want saved through a power cycle.

Query Commands

Several special characters can be used to query the device about its settings.
$\wedge \quad$ What is the default value for the setting(s).
? What is the device's current value for the setting(s).

* What is the range of possible values for the setting(s). (The device's response uses a dash (-) to indicate a continuous range of values. A pipe (I) separates items in a list of non-continuous values.)

:Name: Field Usage (Optional)

This command returns the query information from the scanner.

Tag Field Usage

When a query is used in place of a Tag field, the query applies to the entire set of commands available for the particular storage table indicated by the Storage field of the command. In this case, the SubTag and Data fields should not be used because they are ignored by the device.

SubTag Field Usage

When a query is used in place of a SubTag field, the query applies only to the subset of commands available that match the Tag field. In this case, the Data field should not be used because it is ignored by the device.

Data Field Usage

When a query is used in place of the Data field, the query applies only to the specific command identified by the Tag and SubTag fields.

Concatenation of Multiple Commands

Multiple commands can be issued within one Prefix/Storage sequence. Only the Tag, SubTag, and Data fields must be repeated for each command in the sequence. If additional commands are to be applied to the same Tag, then the new command sequence is separated with a comma (,) and only the SubTag and Data fields of the additional command are issued. If the additional command requires a different Tag field, the command is separated from previous commands by a semicolon (;).

Responses

The device responds to serial commands with one of three responses:
ACK Indicates a good command which has been processed.
ENQ Indicates an invalid Tag or SubTag command.
NAK Indicates the command was good, but the Data field entry was out of the allowable range for this Tag and SubTag combination, e.g., an entry for a minimum message length of 100 when the field will only accept 2 characters.
When responding, the device echoes back the command sequence with the status character inserted directly before each of the punctuation marks (the period, exclamation point, comma, or semicolon) in the command.

Examples of Query Commands

In the following examples, a bracketed notation [] depicts a non-displayable response.
Example: What is the range of possible values for Codabar Coding Enable?
Enter: cbrena*.
Response: CBRENA0-1[ACK]
This response indicates that Codabar Coding Enable (CBRENA) has a range of values from 0 to 1 (off and on).
Example: What is the default value for Codabar Coding Enable?

Enter: cbrena^.

Response: CBRENA1[ACK]

This response indicates that the default setting for Codabar Coding Enable (CBRENA) is 1, or on.
Example: What is the device's current setting for Codabar Coding Enable?

Enter: cbrena?.

Response: CBRENA1[ACK]

This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1, or on.
Example: What are the device's settings for all Codabar selections?

```
Enter: cbr?.
```

Response: CBRENA1[ACK], SSXO[ACK], CK20[ACK], CCT1[ACK], MIN2[ACK], MAX60[ACK], DFT[ACK].
This response indicates that the device's Codabar Coding Enable (CBRENA) is set to 1, or on; the Start/Stop Character (SSX) is set to 0, or Don't Transmit; the Check Character (CK2) is set to 0 , or Not Required; concatenation (CCT) is set to 1, or Enabled;
the Minimum Message Length (MIN) is set to 2 characters; the Maximum Message Length (MAX) is set to 60 characters; and the Default setting (DFT) has no value.

Trigger Commands

You can activate and deactivate the scanner with serial trigger commands. First, the scanner must be put in Manual Trigger Mode by scanning a Manual Trigger Mode bar code (page 3-5), or by sending a serial menu command for triggering (page 3-5). Once the scanner is in serial trigger mode, the trigger is activated and deactivated by sending the following commands:

Activate: SYN T CR
Deactivate: SYN U CR
The scanner scans until a bar code has been read, until the deactivate command is sent, or until the serial time-out has been reached (see "Read Time-Out" on page 3-6 for a description, and the serial command on page 9-7).

Resetting the Custom Defaults

If you want the custom default settings restored to your scanner, scan the Activate Custom Defaults bar code below. This resets the scanner to the custom default settings. If there are no custom defaults, it will reset the scanner to the factory default settings. Any settings that have not been specified through the custom defaults will be defaulted to the factory default settings.

Activate Custom Defaults
The charts on the following pages list the factory default settings for each of the commands (indicated by an asterisk (*) on the programming pages).

Menu Commands

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Product Default Settings			
Resetting the Defaults	Activate Defaults	DEFALT	1-3
Programming the Interface			
Plug and Play Codes	USB IBM SurePos Handheld	PAPSPH	2-1
	USB IBM SurePos Tabletop	PAPSPT	2-1
	USB Keyboard (PC)	PAP124	2-1
	USB HID	PAP131	2-1
	USB Serial	TERMID130	2-2
USB Serial Settings	CTS/RTS Emulation On	USBCTS1	2-2
	CTS/RTS Emulation Off*	USBCTS0	2-2
	ACK/NAK Mode On	USBACK1	2-2
	ACK/NAK Mode Off*	USBACK0	2-2
Remote MasterMind for USB	ReM Off	REMIFC0	2-2
	*ReM On	REMIFC1	2-2
Wincor Nixdorf Beetle Terminal Default Settings	Wincor Nixdorf Beetle	PAPBTL	2-3
Program Keyboard Country	*U.S.A.	KBDCTYO	2-3
	Albania	KBDCTY35	2-3
	Azeri (Cyrillic)	KBDCTY81	2-3
	Azeri (Latin)	KBDCTY80	2-3
	Belarus	KBDCTY82	2-3
	Belgium	KBDCTY1	2-3
	Bosnia	KBDCTY33	2-4
	Brazil	KBDCTY16	2-4
	Brazil (MS)	KBDCTY59	2-4
	Bulgaria (Cyrillic)	KBDCTY52	2-4
	Bulgaria (Latin)	KBDCTY53	2-4
	Canada (French legacy)	KBDCTY54	2-4
	Canada (French)	KBDCTY18	2-4
	Canada (Multilingual)	KBDCTY55	2-4
	Croatia	KBDCTY32	2-4
	Czech	KBDCTY15	2-4
	Czech (Programmers)	KBDCTY40	2-4
	Czech (QWERTY)	KBDCTY39	2-5
	Czech (QWERTZ)	KBDCTY38	2-5
	Denmark	KBDCTY8	2-5
	Dutch (Netherlands)	KBDCTY11	2-5
	Estonia	KBDCTY41	2-5
	Faroese	KBDCTY83	2-5
	Finland	KBDCTY2	2-5

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
	France	KBDCTY3	2-5
	Gaelic	KBDCTY84	2-5
	Germany	KBDCTY4	2-5
	Greek	KBDCTY17	2-5
	Greek (220 Latin)	KBDCTY64	2-6
	Greek (220)	KBDCTY61	2-6
	Greek (319 Latin)	KBDCTY65	2-6
	Greek (319)	KBDCTY62	2-6
	Greek (Latin)	KBDCTY63	2-6
	Greek (MS)	KBDCTY66	2-6
	Greek (Polytonic)	KBDCTY60	2-6
	Hebrew	KBDCTY12	2-6
	Hungarian (101 key)	KBDCTY50	2-6
	Hungary	KBDCTY19	2-6
	Iceland	KBDCTY75	2-6
	Irish	KBDCTY73	2-7
	Italian (142)	KBDCTY56	2-7
	Italy	KBDCTY5	2-7
	Japan ASCII	KBDCTY28	2-7
	Kazakh	KBDCTY78	2-7
	Kyrgyz (Cyrillic)	KBDCTY79	2-7
	Latin America	KBDCTY14	2-7
	Latvia	KBDCTY42	2-7
	Latvia (QWERTY)	KBDCTY43	2-7
	Lithuania	KBDCTY44	2-7
	Lithuania (IBM)	KBDCTY45	2-7
	Macedonia	KBDCTY34	2-8
	Malta	KBDCTY74	2-8
	Mongolian (Cyrillic)	KBDCTY86	2-8
	Norway	KBDCTY9	2-8
	Poland	KBDCTY20	2-8
	Polish (214)	KBDCTY57	2-8
	Polish (Programmers)	KBDCTY58	2-8
	Portugal	KBDCTY13	2-8
	Romania	KBDCTY25	2-8
	Russia	KBDCTY26	2-8
	Russian (MS)	KBDCTY67	2-8
	Russian (Typewriter)	KBDCTY68	2-9
	SCS	KBDCTY21	2-9
	Serbia (Cyrillic)	KBDCTY37	2-9
	Serbia (Latin)	KBDCTY36	2-9
	Slovakia	KBDCTY22	2-9
	Slovakia (QWERTY)	KBDCTY49	2-9

Selection	Setting *Indicates default	Serial Command \# Indicates a numeric entry	Page
	Slovakia (QWERTZ)	KBDCTY48	2-9
	Slovenia	KBDCTY31	2-9
	Spain	KBDCTY10	2-9
	Spanish variation	KBDCTY51	2-9
	Sweden	KBDCTY23	2-9
	Switzerland (French)	KBDCTY29	2-10
	Switzerland (German)	KBDCTY6	2-10
	Tatar	KBDCTY85	2-10
	Turkey F	KBDCTY27	2-10
	Turkey Q	KBDCTY24	2-10
	Ukrainian	KBDCTY76	2-10
	United Kingdom	KBDCTY7	2-10
	United Stated (Dvorak right)	KBDCTY89	2-10
	United States (Dvorak left)	KBDCTY88	2-10
	United States (Dvorak)	KBDCTY87	2-10
	United States (International)	KBDCTY30	2-10
	Uzbek (Cyrillic)	KBDCTY77	2-11
Keyboard Conversion	*Keyboard Conversion Off	KBDCNV0	2-12
	Convert all Characters to Upper Case	KBDCNV1	2-12
	Convert all Characters to Lower Case	KBDCNV2	2-12
Keyboard Style	*Regular	KBDSTY0	2-11
	Caps Lock	KBDSTY1	2-11
	Shift Lock	KBDSTY2	2-11
	Automatic Caps Lock	KBDSTY6	2-11
	Emulate External Keyboard	KBDSTY5	2-11
Control Character Output	*Control Character Output Off	KBDNPE0	2-12
	*Control Character Output On	KBDNPE1	2-12
Keyboard Modifiers	*Control + X Off	KBDCAS0	2-13
	DOS Mode Control + X	KBDCAS1	2-13
	Windows Mode Control + X	KBDCAS2	2-13
	Windows Mode Prefix/Suffix Off	KBDCAS3	2-13
	*Turbo Mode Off	KBDTMD0	2-13
	Turbo Mode On	KBDTMD1	2-13
	*Numeric Keypad Off	KBDNPS0	2-13
	Numeric Keypad On	KBDNPS1	2-13
	*Auto Direct Connect Off	KBDADC0	2-14
	Auto Direct Connect On	KBDADC1	2-13
Input/Output Selections			
Power Up Beeper	Power Up Beeper Off - Scanner	BEPPWR0	3-1
	*Power Up Beeper On - Scanner	BEPPWR1	3-1

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Beep on BEL Character	Beep on BEL On	BELBEP1	3-1
	*Beep on BEL Off	BELBEP0	3-1
Trigger Click	On	BEPTRG1	3-1
	*Off	BEPTRG0	3-1
Beeper - Good Read	Off	BEPBEP0	3-2
	*On	BEPBEP1	3-2
Beeper Volume - Good Read	Off	BEPLVL0	3-2
	Low	BEPLVL1	3-2
	Medium	BEPLVL2	3-2
	*High	BEPLVL3	3-2
Beeper Pitch - Good Read (Frequency)	Low (1600) (min 400Hz)	BEPFQ11600	3-2
	*Medium (2700 Hz)	BEPFQ12700	3-2
	High (4200) (max 9000Hz)	BEPFQ14200	3-2
Beeper Pitch - Error (Frequency)	*Razz (250) (min 200Hz)	BEPFQ2800	3-3
	Medium (3250)	BEPFQ23250	3-3
	High (4200) (max 9000Hz)	BEPFQ24200	3-3
Beeper Duration - Good Read	*Normal Beep	BEPBIP0	3-3
	Short Beep	BEPBIP1	3-3
LED - Good Read	Off	BEPLED0	3-3
	*On	BEPLED1	3-3
LED Indicator State	*Off	BEPPOIO	3-4
	On	BEPPOI1	3-4
Number of Beeps - Error	*1	BEPERR3	3-4
	Range 1-9	BEPERR\#	3-4
Number of Beeps - Good Read	*1	BEPRPT1	3-4
	Range 1-9	BEPRPT\#	3-4
Beeper Volume Max	Beeper Volume Max	PAPBLM	3-4
Good Read Delay	*No Delay	DLYGRD0	3-5
	Short Delay (500 ms)	DLYGRD500	3-5
	Medium Delay (1000 ms)	DLYGRD1000	3-5
	Long Delay (1500 ms)	DLYGRD1500	3-5
User-Specified Good Read Delay	Range 0-30,000 ms	DLYGRD\#\#\#\#\#	3-5
Manual Trigger Modes	*Manual Trigger - Normal	PAPHHF	3-5
	Manual Trigger - Enhanced	PAPHHS	3-5
Serial Trigger Mode	$\begin{aligned} & \text { Read Time-Out } \\ & (0-300,000 \mathrm{~ms}) * 30,000 \end{aligned}$	TRGSTO\#\#\#\#	3-6
Scan Stand Presentation Mode	Scan Stand Presentation Mode	TRGMOD4	3-6
Presentation LED Behavior After Decode	*LEDs On	TRGPCK1	3-6
	LEDs Off	TRGPCK0	3-6
Presentation Sensitivity	Range 0-20 (*1)	TRGPMS\#\#	3-6

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Presentation Centering Window	Presentation Centering On	PDCWIN1	3-7
	*Presentation Centering Off	PDCWIN0	3-7
	Left of Presentation Centering Window (*40\%)	PDCLFT\#\#\#	3-8
	Right of Presentation Centering Window (*60\%)	PDCRGT\#\#\#	3-8
	Top of Presentation Centering Window (*40\%)	PDCTOP\#\#\#	3-7
	Bottom of Presentation Centering Window (*60\%)	PDCBOT\#\#\#	3-7
CodeGate	*CodeGate Off Out-of-Stand	AOSCGD0.	3-8
	CodeGate On Out-of-Stand	AOSCGD1.	3-8
Hands Free Time-Out	Range 0-300,000 ms	TRGPTO\#\#\#\#\#\#	3-8
Reread Delay	Short (500 ms)	DLYRRD500	3-8
	Medium (750 ms)	DLYRRD750	3-9
	*Long (1000 ms)	DLYRRD1000	3-9
	Extra Long (2000 ms)	DLYRRD2000	3-8
User-Specified	Range 0-30,000 ms	DLYRRD\#\#\#\#\#	3-9
2D Reread Delay	*2D Reread Delay Off	DLY2RR0	3-9
	Short (1000ms)	DLY2RR1000	3-9
	Medium (2000ms)	DLY2RR2000	3-9
	Long (3000ms)	DLY2RR3000	3-9
	Extra Long (4000ms)	DLY2RR4000	3-9
Illumination Lights	*Lights On	SCNLED1	3-10
	Lights Off	SCNLED0	3-10
Aimer Delay	200 milliseconds	SCNDLY200	3-10
	400 milliseconds	SCNDLY400	3-10
	*Off (no delay)	SCNDLY0	3-10
User-Specified Aimer Delay	Range 0-4,000 ms	SCNDLY\#\#\#\#	3-10
Aimer Mode	Off	SCNAIM0	3-10
	*Interlaced	SCNAIM2	3-11
Centering Window	Centering On	DECWIN1	3-11
	*Centering Off	DECWIN0	3-12
	Left of Centering Window (*40\%)	DECLFT\#\#\#	3-12
	Right of Centering Window (*60\%)	DECRGT\#\#\#	3-12
	Top of Centering Window (*40\%)	DECTOP\#\#\#	3-12
	Bottom of Centering Window (*60\%)	DECBOT\#\#\#	3-12

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Preferred Symbology	On	PRFENA1	3-12
	*Off	PRFENAO	3-12
	High Priority Symbology	PRFCOD\#\#	3-13
	Low Priority Symbology	PRFBLK\#\#	3-13
	Preferred Symbology Timeout (*500) Range 100-3000	PRFPTO\#\#\#\#	3-13
	Preferred Symbology Default	PRFDFT	3-13
Output Sequence Editor	Enter Sequence	SEQBLK	3-15
	Default Sequence	SEQDFT	3-15
Partial Sequence	Transmit Partial Sequence	SEQTTS1	3-15
	*Discard Partial Sequence	SEQTTS0	3-16
Require Output Sequence	Required	SEQ_EN2	3-16
	On/Not Required	SEQ_EN1	3-16
	*Off	SEQ_ENO	3-16
Multiple Symbols	On	SHOTGN1	3-16
	*Off	SHOTGN0	3-16
No Read	On	SHWNRD1	3-16
	*Off	SHWNRD0	3-16
Video Reverse	Video Reverse Only	VIDREV1	3-17
	Video Reverse and Standard Bar Codes	VIDREV2	3-17
	*Video Reverse Off	VIDREV0	3-17
Working Orientation	*Upright	ROTATN0	3-18
	Vertical, Bottom to Top (Rotate CCW 90 ${ }^{\circ}$)	ROTATN1	3-18
	Upside Down	ROTATN2	3-18
	Vertical, Top to Bottom (Rotate CW 90°)	ROTATN3	3-18
Prefix/Suffix Selections			
Add CR Suffix to All Symbologies		VSUFCR	4-2
Prefix	Add Prefix	PREBK2\#\#	4-2
	Clear One Prefix	PRECL2	4-2
	Clear All Prefixes	PRECA2	4-2
Suffix	Add Suffix	SUFBK2\#\#	4-2
	Clear One Suffix	SUFCL2	4-2
	Clear All Suffixes	SUFCA2	4-2
Function Code Transmit	*Enable	RMVFNC0	4-3
	Disable	RMVFNC1	4-3
Intercharacter Delay	Range 0-1000 (5ms increments)	DLYCHR\#\#	4-3
User Specified Intercharacter Delay	Delay Length 0-1000 (5ms increments)	DLYCRX\#\#	4-4
	Character to Trigger Delay	DLY_XX\#\#	4-4
Interfunction Delay	Range 0-1000 (5ms increments)	DLYFNC\#\#	4-4
Intermessage Delay	Range 0-1000 (5ms increments)	DLYMSG\#\#	4-4

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Data Formatter Selections			
Data Format Editor	*Default Data Format (None)	DFMDF3	5-1
	Enter Data Format	DFMBK3\#\#	5-2
	Clear One Data Format	DFMCL3	5-2
	Clear All Data Formats	DFMCA3	5-2
Data Formatter	Data Formatter Off	DFM_EN0	5-10
	*Data Formatter On, Not Required, Keep Prefix/Suffix	DFM_EN1	5-11
	Data Format Required, Keep Prefix/Suffix	DFM_EN2	5-11
	Data Formatter On, Not Required, Drop Prefix/Suffix	DFM_EN3	5-11
	Data Format Required, Drop Prefix/Suffix	DFM_EN4	5-11
Data Format Non-Match Error Tone	*Data Format Non-Match Error Tone On	DFMDEC0	5-11
	Data Format Non-Match Error Tone Off	DFMDEC1	5-11
Primary/Alternate Data Formats	Primary Data Format	ALTFNM0	5-12
	Data Format 1	ALTFNM1	5-12
	Data Format 2	ALTFNM2	5-12
	Data Format 3	ALTFNM3	5-12
Single Scan Data Format Change	Single Scan-Primary Data Format	VSAF_0	5-12
	Single Scan-Data Format 1	VSAF_1	5-12
	Single Scan-Data Format 2	VSAF_2	5-12
	Single Scan-Data Format 3	VSAF_3	5-12
Symbologies			
All Symbologies	*All Symbologies Off	ALLENA0	6-1
	All Symbologies On	ALLENA1	6-1
Codabar	Default All Codabar Settings	CBRDFT	6-2
	Off	CBRENAO	6-2
	*On	CBRENA1	6-2
Codabar Start/Stop Char.	*Don't Transmit	CBRSSX0	6-2
	Transmit	CBRSSX1	6-2
Codabar Check Char.	*No Check Char.	CBRCK20	6-2
	Validate, But Don't Transmit	CBRCK21	6-2
	Validate, and Transmit	CBRCK22	6-2
Codabar Concatenation	*Off	CBRCCT0	6-3
	On	CBRCCT1	6-3
	Require	CBRCCT2	6-3

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Codabar Message Length	Minimum (2-60) *4	CBRMIN\#\#	6-3
	Maximum (2-60) *60	CBRMAX\#\#	6-3
Code 39	Default All Code 39 Settings	C39DFT	6-4
	Off	C39ENA0	6-4
	*On	C39ENA1	6-4
Code 39 Start/Stop Char.	*Don't Transmit	C39SSX0	6-4
	Transmit	C39SSX1	6-4
Code 39 Check Char.	*No Check Char.	C39CK20	6-4
	Validate, But Don't Transmit	C39CK21	6-4
	Validate, and Transmit	C39CK22	6-4
Code 39 Message Length	Minimum (0-48) *0	C39MIN\#\#	6-5
	Maximum (0-48) *48	C39MAX\#\#	6-5
Code 39 Append	*Off	C39APP0	6-5
	On	C39APP1	6-5
Code 32 Pharmaceutical (PARAF)	*Off	C39B320	6-5
	On	C39B321	6-5
Code 39 Full ASCII	*Off	C39ASC0	6-6
	On	C39ASC1	6-6
	Code 39 Code Page	C39DCP	6-6
Interleaved 2 of 5	Default All Interleaved 2 of 5 Settings	I25DFT	6-7
	Off	I25ENA0	6-7
	*On	I25ENA1	6-7
Interleaved 2 of 5 Check Digit	*No Check Char.	I25CK20	6-7
	Validate, But Don't Transmit	I25CK21	6-7
	Validate, and Transmit	I25CK22	6-7
Interleaved 2 of 5 Message Length	Minimum (2-80) *4	I25MIN\#\#	6-7
	Maximum (2-80) *80	I25MAX\#\#	6-7
NEC 2 of 5	Default All NEC 2 of 5 Settings	N25DFT	6-8
	Off	N25ENA0	6-8
	*On	N25ENA1	6-8
NEC 2 of 5 Check Digit	*No Check Char.	N25CK20	6-8
	Validate, But Don't Transmit	N25CK21	6-8
	Validate, and Transmit	N25CK22	6-8
NEC 2 of 5 Message Length	Minimum (2-80) *4	N25MIN\#\#	6-9
	Maximum (2-80) *80	N25MAX\#\#	6-9

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 93	Default All Code 93 Settings	C93DFT	6-9
	Off	C93ENA0	6-9
	*On	C93ENA1	6-9
Code 93 Message Length	Minimum (0-80) *0	C93MIN\#\#	6-9
	Maximum (0-80) *80	C93MAX\#\#	6-9
Code 93 Append	On	C93APP1	6-10
	*Off	C93APP0	6-10
Code 93 Code Page	Code 93 Code Page	C93DCP	6-10
Straight 2 of 5 Industrial	Default All Straight 2 of 5 Industrial Settings	R25DFT	6-11
	*Off	R25ENA0	6-11
	On	R25ENA1	6-11
Straight 2 of 5 Industrial Message Length	Minimum (1-48) *4	R25MIN\#\#	6-11
	Maximum (1-48) *48	R25MAX\#\#	6-11
Straight 2 of 5 IATA	Default All Straight 2 of 5 IATA Settings	A25DFT	6-12
Straight 2 of 5 IATA	*Off	A25ENA0	6-12
	On	A25ENA1	6-12
Straight 2 of 5 IATA Message Length	Minimum (1-48) *4	A25MIN\#\#	6-12
	Maximum (1-48) *48	A25MAX\#\#	6-12
Matrix 2 of 5	Default All Matrix 2 of 5 Settings	X25DFT	6-13
	*Off	X25ENA0	6-13
	On	X25ENA1	6-13
Matrix 2 of 5 Message Length	Minimum (1-80) *4	X25MIN\#\#	6-13
	Maximum (1-80) *80	X25MAX\#\#	6-13
Code 11	Default All Code 11 Settings	C11DFT	6-14
	*Off	C11ENA0	6-14
	On	C11ENA1	6-14
Code 11 Check Digits Required	1 Check Digit	C11CK20	6-14
	*2 Check Digits	C11CK21	6-14
Code 11 Message Length	Minimum (1-80) *4	C11MIN\#\#	6-14
	Maximum (1-80) *80	C11MAX\#\#	6-14
Code 128	Default All Code 128 Settings	128DFT	6-15
	Off	128ENA0	6-15
	*On	128ENA1	6-15
ISBT Concatenation	*Off	ISBENA0	6-15
	On	ISBENA1	6-15
Code 128 Message Length	Minimum (0-80) *0	128MIN\#\#	6-15
	Maximum (0-80) *80	128MAX\#\#	6-15

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Code 128 Append	*On	128APP1	6-16
	Off	128APP0	6-16
Code 128 Code Page	Code 128 Code Page (*2)	128DCP\#\#	6-16
GS1-128	Default All GS1-128 Settings	GS1DFT	6-17
	*On	GS1ENA1	6-17
	Off	GS1ENA0	6-17
GS1-128 Message Length	Minimum (1-80) *1	GS1MIN\#\#	6-17
	Maximum (0-80) *80	GS1MAX\#\#	6-17
Telepen	Default All Telepen Settings	TELDFT	6-18
	*Off	TELENA0	6-18
	On	TELENA1	6-18
Telepen Output	*AIM Telepen Output	TELOLD0	6-18
	Original Telepen Output	TELOLD1	6-18
Telepen Message Length	Minimum (1-60) *1	TELMIN\#\#	6-18
	Maximum (1-60) *60	TELMAX\#\#	6-18
UPC-A	Default All UPC-A Settings	UPADFT	6-19
	Off	UPAENAO	6-19
	*On	UPAENA1	6-19
UPC-A Check Digit	Off	UPACKX0	6-19
	*On	UPACKX1	6-19
UPC-A Number System	Off	UPANSX0	6-19
	*On	UPANSX1	6-19
UPC-A 2 Digit Addenda	*Off	UPAAD20	6-20
	On	UPAAD21	6-20
UPC-A 5 Digit Addenda	*Off	UPAAD50	6-20
	On	UPAAD51	6-20
UPC-A Addenda Required	*Not Required	UPAARQ0	6-20
	Required	UPAARQ1	6-20
Addenda Timeout	Range (0-65535) *100	DLYADD\#\#\#\#\#	6-20
UPC-A Addenda Separator	Off	UPAADS0	6-21
	*On	UPAADS1	6-21
UPC-A/EAN-13 with Extended Coupon Code	*Off	CPNENAO	6-21
	Allow Concatenation	CPNENA1	6-21
	Require Concatenation	CPNENA2	6-21
Coupon GS1 DataBar Output	GS1 Output Off	CPNGS10	6-21
	GS1 Output On	CPNGS11	6-21
UPC-E0	Default All UPC-E Settings	UPEDFT	6-22
	Off	UPEEN00	6-22
	*On	UPEEN01	6-22

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
UPC-E0 Expand	*Off	UPEEXP0	6-22
	On	UPEEXP1	6-22
UPC-E0 Addenda Required	Required	UPEARQ1	6-22
	*Not Required	UPEARQ0	6-22
Addenda Timeout	Range (0-65535) *100	DLYADD\#\#\#\#\#	6-22
UPC-E0 Addenda Separator	*On	UPEADS1	6-23
	Off	UPEADS0	6-23
UPC-E0 Check Digit	Off	UPECKX0	6-23
	*On	UPECKX1	6-23
UPC-E0 Leading Zero	Off	UPENSX0	6-23
	*On	UPENSX1	6-23
UPC-EO Addenda	2 Digit Addenda On	UPEAD21	6-24
	*2 Digit Addenda Off	UPEAD20	6-24
	5 Digit Addenda On	UPEAD51	6-24
	*5 Digit Addenda Off	UPEAD50	6-24
UPC-E1	*Off	UPEEN10	6-24
	On	UPEEN11	6-24
EAN/JAN-13	Default All EAN/ JAN Settings	E13DFT	6-25
	Off	E13ENA0	6-25
	*On	E13ENA1	6-25
Convert UPC-A to EAN-13	UPC-A Converted to EAN-13	UPAENA0	6-25
	Do not Convert UPC-A	UPAENA1	6-25
EAN/JAN-13 Check Digit	Off	E13CKX0	6-25
	*On	E13CKX1	6-25
EAN/JAN-13 2 Digit Addenda	2 Digit Addenda On	E13AD21	6-26
	*2 Digit Addenda Off	E13AD20	6-26
	5 Digit Addenda On	E13AD51	6-26
	*5 Digit Addenda Off	E13AD50	6-26
EAN/JAN-13 Addenda Required	*Not Required	E13ARQ0	6-26
	Required	E13ARQ1	6-26
Addenda Timeout	Range (0-65535) *100	DLYADD\#\#\#\#\#	6-26
EAN/JAN-13 Addenda Separator	Off	E13ADS0	6-27
	*On	E13ADS1	6-27
ISBN Translate	*Off	E13ISB0	6-27
	On	E13ISB1	6-27
EAN/JAN-8	Default All EAN/ JAN 8 Settings	EA8DFT	6-28
	Off	EA8ENA0	6-28
	*On	EA8ENA1	6-28
EAN/JAN-8 Check Digit	Off	EA8CKX0	6-28
	*On	EA8CKX1	6-28

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
EAN/JAN-8 Addenda	*2 Digit Addenda Off	EA8AD20	6-28
	2 Digit Addenda On	EA8AD21	6-28
	*5 Digit Addenda Off	EA8AD50	6-28
	5 Digit Addenda On	EA8AD51	6-28
EAN/JAN-8 Addenda Required	*Not Required	EA8ARQ0	6-29
	Required	EA8ARQ1	6-29
Addenda Timeout	Range (0-65535) *100	DLYADD\#\#\#\#\#	6-29
EAN/JAN-8 Addenda Separator	Off	EA8ADS0	6-29
	*On	EA8ADS1	6-29
MSI	Default All MSI Settings	MSIDFT	6-30
	*Off	MSIENAO	6-30
	On	MSIENA1	6-30
MSI Check Character	*Validate Type 10, but Don't Transmit	MSICHKO	6-30
	Validate Type 10 and Transmit	MSICHK1	6-30
	Validate 2 Type 10 Chars, but Don't Transmit	MSICHK2	6-30
	Validate 2 Type 10 Chars and Transmit	MSICHK3	6-30
	Validate Type 10 then Type 11 Char, but Don't Transmit	MSICHK4	6-30
	Validate Type 10 then Type 11 Char and Transmit	MSICHK5	6-31
	Disable MSI Check Characters	MSICHK6	6-31
MSI Message Length	Minimum (4-48) *4	MSIMIN\#\#	6-31
	Maximum (4-48) *48	MSIMAX\#\#	6-31
GS1 DataBar Omnidirectional	Default All GS1 DataBar Omnidirectional Settings	RSSDFT	6-32
	Off	RSSENA0	6-32
	*On	RSSENA1	6-32
GS1 DataBar Limited	Default All GS1 DataBar Limited Settings	RSLDFT	6-32
	Off	RSLENA0	6-32
	*On	RSLENA1	6-32
GS1 DataBar Expanded	Default All GS1 DataBar Expanded Settings	RSEDFT	6-33
	Off	RSEENA0	6-33
	*On	RSEENA1	6-33
GS1 DataBar Expanded Msg. Length	Minimum (4-74)*4	RSEMIN\#\#	6-33
	Maximum (4-74) *74	RSEMAX\#\#	6-33
Trioptic Code	*Off	TRIENA0	6-33
	On	TRIENA1	6-33

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Codablock A	Default All Codablock A Settings	CBADFT	6-34
	*Off	CBAENAO	6-34
	On	CBAENA1	6-34
Codablock A Msg. Length	Minimum (1-600) *1	CBAMIN\#\#\#	6-34
	Maximum (1-600) *600	CBAMAX\#\#\#	6-34
Codablock F	Default All Codablock F Settings	CBFDFT	6-35
	*Off	CBFENA0	6-35
	On	CBFENA1	6-35
Codablock F Msg. Length	Minimum (1-2048) *1	CBFMIN\#\#\#\#	6-35
	Maximum (1-2048) *2048	CBFMAX\#\#\#\#	6-35
PDF417	Default All PDF417 Settings	PDFDFT	6-36
	*On	PDFENA1	6-36
	Off	PDFENA0	6-36
PDF417 Msg. Length	Minimum (1-2750) *1	PDFMIN\#\#\#\#	6-36
	Maximum (1-2750) *2750	PDFMAX\#\#\#\#	6-36
MacroPDF417	*On	PDFMAC1	6-37
	Off	PDFMAC0	6-37
MicroPDF417	Default All Micro PDF417 Settings	MPDDFT	6-37
	On	MPDENA1	6-37
	*Off	MPDENAO	6-37
MicroPDF417 Msg. Length	Minimum (1-366) *1	MPDMIN\#\#\#	6-37
	Maximum (1-366) *366	MPDMAX\#\#\#	6-37
GS1 Composite Codes	On	COMENA1	6-37
	*Off	COMENAO	6-37
UPC/EAN Version	On	COMUPC1	6-38
	*Off	COMUPC0	6-38
GS1 Composite Codes Msg. Length	Minimum (1-2435) *1	COMMIN\#\#\#\#	6-38
	Maximum (1-2435) *2435	COMMAX\#\#\#\#	6-38
GS1 Emulation	GS1-128 Emulation	EANEMU1	6-38
	GS1 DataBar Emulation	EANEMU2	6-37
	GS1 Code Expansion Off	EANEMU3	6-39
	EAN8 to EAN13 Conversion	EANEMU4	6-39
	*GS1 Emulation Off	EANEMU0	6-39
TCIF Linked Code 39	On	T39ENA1	6-39
	*Off	T39ENA0	6-39
QR Code	Default All QR Code Settings	QRCDFT	6-39
	*On	QRCENA1	6-39
	Off	QRCENA0	6-39
QR Code Msg. Length	Minimum (1-7089) *1	QRCMIN\#\#\#\#	6-40
	Maximum (1-7089) *7089	QRCMAX\#\#\#\#	6-40
QR Code Append	*On	QRCAPP1	6-40
	Off	QRCAPP0	6-40
QR Code Page	QR Code Page (*3)	QRCDCP\#\#	6-40

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Data Matrix	Default All Data Matrix Settings	IDMDFT	6-41
	*On	IDMENA1	6-41
	Off	IDMENAO	6-41
Data Matrix Msg. Length	Minimum (1-3116) *1	IDMMIN\#\#\#\#	6-41
	Maximum (1-3116) *3116	IDMMAX\#\#\#\#	6-41
Data Matrix Append	*On	IDMAPP1	6-41
	Off	IDMAPP0	6-41
Data Matrix Code Page	Data Matrix Code Page (*51)	IDMDCP\#\#	6-41
MaxiCode	Default All MaxiCode Settings	MAXDFT	6-42
	On	MAXENA1	6-42
	*Off	MAXENA0	6-42
MaxiCode Msg. Length	Minimum (1-150) *1	MAXMIN\#\#\#	6-42
	Maximum (1-150) *150	MAXMAX\#\#\#	6-42
Aztec Code	Default All Aztec Code Settings	AZTDFT	6-43
	*On	AZTENA1	6-43
	Off	AZTENAO	6-43
Aztec Code Msg. Length	Minimum (1-3832) *1	AZTMIN\#\#\#\#	6-43
	Maximum (1-3832) *3832	AZTMAX\#\#\#\#	6-43
Aztec Append	*On	AZTAPP1	6-43
	Off	AZTAPP0	6-43
Aztec Code Page	Aztec Code Page (*51)	AZTDCP\#\#	6-43
Chinese Sensible (Han Xin) Code	Default All Han Xin Code Settings	HX_DFT	6-44
	On	HX_ENA1	6-44
	*Off	HX_ENAO	6-44
Chinese Sensible (Han Xin) Code Msg. Length	Minimum (1-7833) *1	HX_MIN\#\#\#\#	6-44
	Maximum (1-7833) *7833	HX_MAX\#\#\#\#	6-44
Postal Codes - 2D			
2D Postal Codes	*Off	POSTALO	6-45
Single 2D Postal Codes	Australian Post On	POSTAL1	6-45
	British Post On	POSTAL7	6-45
	Canadian Post On	POSTAL30	6-45
	Intelligent Mail Bar Code On	POSTAL10	6-45
	Japanese Post On	POSTAL3	6-45
	KIX Post On	POSTAL4	6-45
	Planet Code On	POSTAL5	6-45
	Postal-4i On	POSTAL9	6-45
	Postnet On	POSTAL6	6-46
	Postnet with B and B' Fields On	POSTAL11	6-46
	InfoMail On	POSTAL2	6-46

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Combination 2D Postal Codes	InfoMail and British Post On	POSTAL8	6-46
	Intelligent Mail Bar Code and Postnet with B and B' Fields On	POSTAL20	6-46
	Postnet and Postal-4i On	POSTAL14	6-46
	Postnet and Intelligent Mail Bar Code On	POSTAL16	6-46
	Postal-4i and Intelligent Mail Bar Code On	POSTAL17	6-46
	Postal-4i and Postnet with B and B' Fields On	POSTAL19	6-46
	Planet and Postnet On	POSTAL12	6-46
	Planet and Postnet with B and B' Fields On	POSTAL18	6-47
	Planet and Postal-4i On	POSTAL13	6-47
	Planet and Intelligent Mail Bar Code On	POSTAL15	6-47
	Planet, Postnet, and Postal-4i On	POSTAL21	6-47
	Planet, Postnet, and Intelligent Mail Bar Code On	POSTAL22	6-47
	Planet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL23	6-47
Combination 2D Postal Codes (continued)	Postnet, Postal-4i, and Intelligent Mail Bar Code On	POSTAL24	6-47
	Planet, Postal-4i, and Postnet with B and B' Fields On	POSTAL25	6-47
	Planet, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL26	6-47
	Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL27	6-47
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet On	POSTAL28	6-48
	Planet, Postal-4i, Intelligent Mail Bar Code, and Postnet with B and B' Fields On	POSTAL29	6-47
Planet Code Check Digit	Transmit	PLNCKX1	6-48
	*Don't Transmit	PLNCKX0	6-48
Postnet Check Digit	Transmit	NETCKX1	6-48
	*Don't Transmit	NETCKX0	6-48
Australian Post Interpretation	Bar Output	AUSINT0	6-49
	Numeric N Table	AUSINT1	6-49
	Alphanumeric C Table	AUSINT2	6-49
	Combination N and C Tables	AUSINT3	6-49

Selection	Setting * Indicates default	Serial Command \# Indicates a numeric entry	Page
Postal Codes - Linear			
China Post (Hong Kong 2 of 5)	Default All China Post (Hong Kong 2 of 5) Settings	CPCDFT	6-49
	*Off	CPCENAO	6-49
	On	CPCENA1	6-49
China Post (Hong Kong 2 of 5) Msg. Length	Minimum (2-80) *4	CPCMIN\#\#	6-49
	Maximum (2-80) *80	CPCMAX\#\#	6-49
Korea Post	Default All Korea Post Settings	KPCDFT	6-50
	*Off	KPCENA0	6-50
	On	KPCENA1	6-50
Korea Post Msg. Length	Minimum (2-80) *4	KPCMIN\#\#	6-50
	Maximum (2-80) *48	KPCMAX\#\#	6-50
Korea Post Check Digit	Transmit Check Digit	KPCCHK1	6-50
	*Don't Transmit Check Digit	KPCCHK0	6-50
Utilities			
Add Code I.D. Prefix to All Symbologies (Temporary)		PRECA2,BK2995C80!	8-1
Show Decoder Revision		REV_DR	8-1
Show Scan Driver Revision		REV_SD	8-1
Show Software Revision		REVINF	8-1
Show Data Format		DFMBK3?	8-1
Test Menu	On	TSTMNU1	8-2
	*Off	TSTMNU0	8-2
Application Plug-Ins (Apps)	*Decoding Apps On	PLGDCE1	8-2
	Decoding Apps Off	PLGDCE0	8-2
	Formatting Apps On	PLGFOE1	8-2
	*Formatting Apps Off	PLGFOE0	8-2
	List Apps	PLGINF	8-2

Product Specifications

Operational

Light Source: Illumination LEDs Aiming Laser	Visible White LED 434nm and 556nm Red, VLD $652.5 \mathrm{~nm} \pm 7.5 \mathrm{~nm}$
Mechanical	
Dimensions (Typical): Height (excluding cable) Length Width	14.38 inches (365.22 mm) 13.39 inches (340.08 mm) 15.07 inches (382.68 mm)
Weight (typical): Imager Stand	$\begin{aligned} & 3 \mathrm{oz} .(85 \mathrm{~g}) \\ & 4.4 \mathrm{lbs}(2 \mathrm{~kg}) \end{aligned}$
Electrical	
Input Voltage	4.5-5.25 VDC
Power: Operating Standby	1.75W (350mA @ 5VDC) 0.5W (100mA @5VDC)

Environmental

Environmental Sealing	IP40
Mechanical Drop Imager	Operational after 50 drops from 5 feet (1.524m) to concrete
Temperature Ranges: Operating Storage	$\begin{aligned} & +32^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\right) \\ & -4^{\circ} \mathrm{F} \text { to }+140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}\right) \end{aligned}$
ESD Tolerance	± 8 KV Direct and ± 15 KV Air
Humidity	5 to 95\% relative humidity, non-condensing
Light Levels	100,000 lux
Scan Performance	
Scan Pattern	Area Image (2592 x1944 pixel array)
Skew Angle	
Horizontal Field Angle	+/-25.5 ${ }^{\circ}$
Vertical Field Angle	+/-20 ${ }^{\circ}$
Symbol Contrast	20\% minimum reflectance difference
Pitch, Skew, Tilt	$45^{\circ}, 45^{\circ}$
Image Resolution	200ppi
Image Speed	17 ppm minimum $-8.5^{\prime \prime} \times 11.0^{\prime \prime}$ (A4) with image processing via TWAIN / SANE / SDKs

Image Format	JPEG: Compression scaled from 0 to 100 BMP:Grayscale TIFF: Binary, Binary Compressed (Group 4), Grayscale
Decode Capability	Reads standard 1D, PDF, 2D, and Postal symbologies

Depth of Field Charts

Typical Performance

Focus			
Symbology		Near Distance	Far Distance
5 mil Code 39	in.	6.6	12.7
	mm	167.6	322.6
7.5 mil Code 39	in.	5.6	15.7
	mm	142.2	398.8
10 mil Code 39	in.	4.6	16.8
	mm	116.8	426.7
13 mil UPC	in.	2.9	19.2
	mm	73.7	487.7
15 mil DM	in.	4.9	17.2
	mm	124.5	436.9
6.7 mil PDF417	in.	5.8	14.4
	mm	147.3	365.8
NYS Drivers License	in.	6.1	14.7
	mm	154.9	373.4
10 mil PDF417	in.	4.3	17.3
	mm	109.2	439.4
8.3 mil PDF417	in.	5.1	16.4
	mm	129.5	416.6
8.3 mil QR Code	in.	6.9	13.5
	mm	175.3	342.9
20 mil QR Code	in.	2.5	20.2
	mm	63.5	513.1

Guaranteed Performance

Focus			
Symbology	Near Distance	Far Distance	
5 mil Code 39	in.	7.9	11.1
	mm	200.7	281.9
7.5 mil Code 39	in.	6.7	12.4
	mm	170.2	315
10 mil Code 39	in.	5.5	11.7
	mm	139.7	297.2

Focus			
13 mil UPC	in.	3.5	15
	mm	88.9	381
15 mil DM	in.	5.9	14.3
	mm	149.9	363.2
6.7 mil PDF417	in.	7	11.7
	mm	177.8	297.2
NYS Drivers License	in.	7.6	11.5
	mm	193	292.1
10 mil PDF417	in.	5.1	12.5
	mm	129.5	317.5
8.3 mil PDF417	in.	5.8	12.4
	mm	147.3	315
8.3 mil QR Code	in.	8.3	11.7
	mm	210.8	297.2
20 mil QR Code	in.	3.2	15.2
	mm	81.3	388.6

Standard Connector Pinout

Note: This pin assignment is not compatible with Honeywell legacy products. Use of a cable with improper pin assignments may lead to damage to the unit. Use of any cables not provided by the manufacturer may result in damage not covered by your warranty.

USB Type A Connector

USB Micro Type B Connector

Vbus	
1	Vbus
2	$\mathrm{D}-$
3	$\mathrm{D}+$
4	Reserved/NC
5	Ground

Maintenance

Repairs

Repairs and/or upgrades are not to be performed on this product. These services are to be performed only by an authorized service center (see Customer Support on page 12-1).

Maintenance

Your device provides reliable and efficient operation with a minimum of care. Although specific maintenance is not required, the following periodic checks ensure dependable operation:

Cleaning the Scanner

The scanner housing and window may be cleaned with a soft cloth or tissue dampened with water (or a mild detergentwater solution.) If a detergent solution is used, rinse with a clean tissue dampened with water only.

```
\} \text { Caution: }
Do not submerge the scanner in water. The scanner's housing is not watertight.
Do not use abrasive wipes or tissues on the scanner's window - abrasive wipes may scratch the window. Never use solvents (e.g., acetone) on the housing or window solvents may damage the finish or the window.
```


Inspecting Cords and Connectors

Inspect the interface cable and connector for wear or other signs of damage. A badly worn cable or damaged connector may interfere with scanner operation. Contact your distributor for information about cable replacement. Cable replacement instructions are on page 11-1.

Replacing Cables in Corded Scanners

The standard interface cable is attached to the scanner with an 10-pin modular connector. When properly seated, the connector is held in the scanner's handle by a flexible retention tab. The interface cable is designed to be field replaceable.

- Order replacement cables from Honeywell or from an authorized distributor.
- When ordering a replacement cable, specify the cable part number of the original interface cable.

Replacing an Interface Cable

1. Turn the power to the host system OFF.
2. Disconnect the scanner's cable from the terminal or computer.
3. Squeeze the retention tab and pull the cable from the scanner.
4. Replace with the new cable.

Insert the connector into the opening and press firmly. The connector is keyed to go in only one way, and will click into place.

Troubleshooting a Scanner

The scanner automatically performs self-tests whenever you turn it on. If your scanner is not functioning properly, review the following Troubleshooting Guide to try to isolate the problem.
Is the power on? Is the aimer on?
If the aimer isn't illuminated, check that:

- The cable is connected properly.
- The host system power is on (if external power isn't used).
- The trigger works.

Is the scanner having trouble reading your symbols?
If the scanner isn't reading symbols well, check that the symbols:

- Aren't smeared, rough, scratched, or exhibiting voids.
- Aren't coated with frost or water droplets on the surface.
- Are enabled in the scanner or in the decoder to which the scanner connects.

Is the bar code displayed but not entered?
The bar code is displayed on the host device correctly, but you still have to press a key to enter it (the Enter/Return key or the Tab key, for example).

- You need to program a suffix. Programming a suffix enables the scanner to output the bar code data plus the key you need (such as "CR") to enter the data into your application. Refer to Prefix/Suffix Overview on page 4-1 for further information.

Does the scanner read the bar code incorrectly?

If the scanner reads a bar code, but the data is not displayed correctly on the host screen:

- The scanner may not be programmed for the appropriate terminal interface. For example, you scan "12345" and the host displays "@es\%."
Reprogram the scanner with the correct Plug and Play bar code. See Programming the Interface beginning on page 2-1.
- The scanner may not be programmed to output your bar code data properly. For example, you scan "12345" and the host displays "A12345B."
Reprogram the scanner with the proper symbology selections. See Chapter 6.

The scanner won't read your bar code at all.

1. Scan the sample bar codes in the back of this manual. If the scanner reads the sample bar codes, check that your bar code is readable.
Verify that your bar code symbology is enabled (see Chapter 6).
2. If the scanner still can't read the sample bar codes, scan All Symbologies On, page 6-1.

If you aren't sure what programming options have been set in the scanner, or if you want the factory default settings restored, refer to Resetting the Defaults on page 8-4.

Customer Support

Technical Assistance

If you need assistance installing or troubleshooting your device, please contact us by using one of the methods below:
Knowledge Base: www.hsmknowledgebase.com
Our Knowledge Base provides thousands of immediate solutions. If the Knowledge Base cannot help, our Technical Support Portal (see below) provides an easy way to report your problem or ask your question.

Technical Support Portal: www.hsmsupportportal.com
The Technical Support Portal not only allows you to report your problem, but it also provides immediate solutions to your technical issues by searching our Knowledge Base. With the Portal, you can submit and track your questions online and send and receive attachments.
Web form: www.hsmcontactsupport.com
You can contact our technical support team directly by filling out our online support form. Enter your contact details and the description of the question/problem.

Telephone: www.honeywellaidc.com/locations
For our latest contact information, please check our website at the link above.

Product Service and Repair

Honeywell International Inc. provides service for all of its products through service centers throughout the world. To obtain warranty or non-warranty service, please visit www.honeywellaidc.com and select Support > Contact Service and Repair to see your region's instructions on how to obtain a Return Material Authorization number (RMA \#). You should do this prior to returning the product.

Limited Warranty

Honeywell International Inc. ("HII") warrants its products to be free from defects in materials and workmanship and to conform to HII's published specifications applicable to the products purchased at the time of shipment. This warranty does not cover any HII product which is (i) improperly installed or used; (ii) damaged by accident or negligence, including failure to follow the proper maintenance, service, and cleaning schedule; or (iii) damaged as a result of (A) modification or alteration by the purchaser or other party, (B) excessive voltage or current supplied to or drawn from the interface connections, (C) static electricity or electrostatic discharge, (D) operation under conditions beyond the specified operating parameters, or (E) repair or service of the product by anyone other than HII or its authorized representatives.

This warranty shall extend from the time of shipment for the duration published by HII for the product at the time of purchase ("Warranty Period"). Any defective product must be returned (at purchaser's expense) during the Warranty Period to HII factory or authorized service center for inspection. No product will be accepted by HII without a Return Materials Authorization, which may be obtained by contacting HII. In the event that the product is returned to HII or its authorized service center within the Warranty Period and HII determines to its satisfaction that the product is defective due to defects in materials or workmanship, HII, at its sole option, will either repair or replace the product without charge, except for return shipping to HII.
EXCEPT AS MAY BE OTHERWISE PROVIDED BY APPLICABLE LAW, THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER COVENANTS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, ORAL OR WRITTEN, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

HII'S RESPONSIBILITY AND PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WARRANTY IS LIMITED TO THE REPAIR OR REPLACEMENT OF THE DEFECTIVE PRODUCT WITH NEW OR REFURBISHED PARTS. IN NO EVENT SHALL HII BE LIABLE FOR INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, AND, IN NO EVENT, SHALL ANY LIABILITY OF HII ARISING IN CONNECTION WITH ANY PRODUCT SOLD HEREUNDER (WHETHER SUCH LIABILITY ARISES FROM A CLAIM BASED ON CONTRACT, WARRANTY, TORT, OR OTHERWISE) EXCEED THE ACTUAL AMOUNT PAID TO HII FOR THE PRODUCT. THESE LIMITATIONS ON LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT

EVEN WHEN HII MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURIES, LOSSES, OR DAMAGES. SOME STATES, PROVINCES, OR COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.
All provisions of this Limited Warranty are separate and severable, which means that if any provision is held invalid and unenforceable, such determination shall not affect the validity of enforceability of the other provisions hereof. Use of any peripherals not provided by the manufacturer may result in damage not covered by this warranty. This includes but is not limited to: cables, power supplies, cradles, and docking stations. HII extends these warranties only to the first end-users of the products. These warranties are non-transferable.

The duration of the limited warranty for the 4850DR is three (3) years.

Reference Charts

Symbology Charts

Note: " m " represents the AIM modifier character. Refer to International Technical Specification, Symbology Identifiers, for AIM modifier character details.

Prefix/Suffix entries for specific symbologies override the universal (All Symbologies, 99) entry.
Refer to Data Editing beginning on page 4-1 and Data Formatting beginning on page 5-1 for information about using Code ID and AIM ID.

Linear Symbologies

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Codabar]Fm	0-1	a	61
Code 11]H3		h	68
Code 128]Cm	0, 1, 2, 4	j	6A
Code 32 Pharmaceutical (PARAF)]X0		<	3C
Code 39 (supports Full ASCII mode)]Am	$0,1,3,4,5,7$	b	62
TCIF Linked Code 39 (TLC39)	JL2		T	54
Code 93 and 93i]Gm	$\begin{aligned} & 0-9, A-Z, \\ & a-m \end{aligned}$	i	69
EAN]Em	0, 1, 3, 4	d	64
EAN-13 (including Bookland EAN)]E0		d	64
EAN-13 with Add-On]E3		d	64
EAN-13 with Extended Coupon Code]E3		d	64
EAN-8]E4		D	44
EAN-8 with Add-On]E3		D	44
GS1				
GS1 DataBar]em	0	y	79
GS1 DataBar Limited]em		\{	7B
GS1 DataBar Expanded]em		\}	7D
GS1-128]C1		I	49
2 of 5				
China Post (Hong Kong 2 of 5)]X0		Q	51
Interleaved 2 of 5]lm	0, 1, 3	e	65
Matrix 2 of 5]X0		m	6D
NEC 2 of 5]X0		Y	59
Straight 2 of 5 IATA]Rm	0, 1, 3	f	66
Straight 2 of 5 Industrial]S0		f	66
MSI]Mm	0,1	g	67
Telepen]Bm		t	74
UPC		0, 1, 2, 3, 8, 9, A, B, C		

	AIM		Honeywell	
Symbology	ID	Possible modifiers (m)	ID	Hex
UPC-A	JE0		c	63
UPC-A with Add-On	JE3		c	63
UPC-A with Extended Coupon Code	JE3		c	63
UPC-E	JE0		E	45
UPC-E with Add-On	JE3		E	45
UPC-E1	JX0		E	45

Add Honeywell Code ID				5 C80
Add AIM Code ID				5 C81
Add Backslash				5 C5C
Batch mode quantity			5	35

2D Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Aztec Code]zm	0-9, A-C	z	7A
Chinese Sensible Code (Han Xin Code)]X0		H	48
Codablock A	106	0, 1, 4, 5, 6	V	56
Codablock F]Om	0, 1, 4, 5, 6	q	71
Code 49]Tm	0, 1, 2, 4	I	6C
Data Matrix]dm	0-6	w	77
GS1]em	0-3		
GS1 Composite]em	0-3	y	79
GS1 DataBar Omnidirectional]em		y	79
MaxiCode]Um	0-3	x	78
PDF417]Lm	0-2	r	72
MicroPDF417]Lm	3-5	R	52
QR Code]Qm	0-6	s	73
Micro QR Code]Qm		s	73

Postal Symbologies

Symbology	AIM		Honeywell	
	ID	Possible modifiers (m)	ID	Hex
All Symbologies				99
Australian Post]X0		A	41
British Post]X0		B	42
Canadian Post]X0		C	43
China Post]X0		Q	51
InfoMail]X0		,	2c
Intelligent Mail Bar Code]X0		M	4D
Japanese Post]X0		J	4A
KIX (Netherlands) Post]X0		K	4B
Korea Post]X0		?	3F
Planet Code]X0		L	4C
Postal-4i]X0		N	4E
Postnet]X0		P	50

ASCII Conversion Chart (Code Page 1252)

In keyboard applications, ASCII Control Characters can be represented in 3 different ways, as shown below. The CTRL+X function is OS and application dependent. The following table lists some commonly used Microsoft functionality. This table applies
to U.S. style keyboards. Certain characters may differ depending on your Country Code/PC regional settings.

Non-printablecharacters \quad ASCII control			Keyboard Control + ASCII (CTRL+X) Mode				
			Control + X Mode Off (KBDCASO)	Windows Mode Control + X Mode On (KBDCAS2)			
DEC	HEX	Char		CTRL + X	CTRL + X function		
0	00	NUL	Reserved	CTRL+ @			
1	01	SOH	NP Enter	CTRL+ A	Select all		
2	02	STX	Caps Lock	CTRL+ B	Bold		
3	03	ETX	ALT Make	CTRL+ C	Copy		
4	04	EOT	ALT Break	CTRL+ D	Bookmark		
5	05	ENQ	CTRL Make	CTRL+ E	Center		
6	06	ACK	CTRL Break	CTRL+ F	Find		
7	07	BEL	Enter / Ret	CTRL+ G			
8	08	BS	(Apple Make)	CTRL+ H	History		
9	09	HT	Tab	CTRL+ I	Italic		
10	OA	LF	(Apple Break)	CTRL+ J	Justify		
11	OB	VT	Tab	CTRL+ K	hyperlink		
12	OC	FF	Delete	CTRL+ L	$\begin{aligned} & \hline \text { list, } \\ & \text { left align } \end{aligned}$		
13	OD	CR	Enter / Ret	CTRL+ M			
14	OE	SO	Insert	CTRL+ N	New		
15	OF	SI	ESC	CTRL+ O	Open		
16	10	DLE	F11	CTRL+ P	Print		
17	11	DC1	Home	CTRL+ Q	Quit		
18	12	DC2	PrtScn	CTRL+ R			
19	13	DC3	Backspace	CTRL+ S	Save		
20	14	DC4	Back Tab	CTRL+ T			
21	15	NAK	F12	CTRL+ U			
22	16	SYN	F1	CTRL+ V	Paste		
23	17	ETB	F2	CTRL+ W			
24	18	CAN	F3	CTRL+ X			
25	19	EM	F4	CTRL+ Y			
26	1A	SUB	F5	CTRL+ Z			
27	1B	ESC	F6	CTRL+ [
28	1 C	FS	F7	CTRL+ $\$ & \hline 29 & 1D & GS & F8 & CTRL+] & \hline 30 & 1E & RS & F9 & CTRL+^ & \hline 31 & 1F & US & F10 & CTRL+ - & \hline 127 & 7F & \bigcirc	NP Enter		

Lower ASCII Reference Table

Note: Windows Code page 1252 and lower ASCII use the same characters.

Printable Characters									
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character	
32	20	<SPACE>	64	40	$@$	96	60	-	
33	21	$!$	65	41	A	97	61	a	
34	22	$"$	66	42	B	98	62	b	
35	23	$\#$	67	43	C	99	63	c	

Printable Characters (Continued)								
DEC	HEX	Character	DEC	HEX	Character	DEC	HEX	Character
36	24	\$	68	44	D	100	64	d
37	25	\%	69	45	E	101	65	e
38	26	\&	70	46	F	102	66	f
39	27	'	71	47	G	103	67	g
40	28	$($	72	48	H	104	68	h
41	29)	73	49	I	105	69	I
42	2A	*	74	4A	J	106	6A	j
43	2B	+	75	4B	K	107	6B	k
44	2C	,	76	4C	L	108	6C	1
45	2D	-	77	4D	M	109	6D	m
46	2E	.	78	4E	N	110	6E	n
47	2F	1	79	4F	O	111	6F	0
48	30	0	80	50	P	112	70	p
49	31	1	81	51	Q	113	71	q
50	32	2	82	52	R	114	72	r
51	33	3	83	53	S	115	73	s
52	34	4	84	54	T	116	74	t
53	35	5	85	55	U	117	75	u
54	36	6	86	56	V	118	76	v
55	37	7	87	57	W	119	77	w
56	38	8	88	58	X	120	78	x
57	39	9	89	59	Y	121	79	y
58	3A	:	90	5A	Z	122	7A	z
59	3B	;	91	5B	[123	7B	\{
60	3C	<	92	5C	1	124	7 C	1
61	3D	$=$	93	5D]	125	7D	\}
62	3E	$>$	94	5E	\wedge	126	7E	\sim
63	3F	?	95	5F	-	127	7F	\bigcirc

Extended ASCII Characters					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
128	80	€	Ç	up arrow \uparrow	0x48
129	81		ü	down arrow \downarrow	0×50
130	82	,	é	right arrow \longrightarrow	0x4B
131	83	f	â	left arrow \leftarrow	0x4D
132	84	"	ä	Insert	0x52
133	85	\ldots	à	Delete	0x53
134	86	\dagger	à	Home	0x47
135	87	\ddagger	Ç	End	0x4F
136	88	\cdots	ê	Page Up	0x49
137	89	\%	ë	Page Down	0x51
138	8A	Š	è	Right ALT	0x38
139	8B	<	ï	Right CTRL	0x1D
140	8C	OE	î	Reserved	n/a
141	8D		ì	Reserved	n/a
142	8E	Ž	Ä	Numeric Keypad Enter	0x1C
143	8F		A	Numeric Keypad /	0x35
144	90		É	F1	0x3B
145	91	'	æ	F2	0x3C
146	92	,	た	F3	0x3D
147	93	"	ô	F4	0x3E

Extended ASCII Characters (Continued)						
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
148	94	"	ö	F5	0x3F	
149	95	-	ò	F6	0x40	
150	96	-	û	F7	0x41	
151	97	-	ù	F8	0x42	
152	98	\sim	ÿ	F9	0x43	
153	99	TM	Ö	F10	0x44	
154	9A	š	Ü	F11	0×57	
155	9B	,	¢	F12	0x58	
156	9C	œ	£	Numeric Keypad +	0x4E	
157	9D		$¥$	Numeric Keypad -	0x4A	
158	9E	ž	Pts	Numeric Keypad *	0x37	
159	9F	\ddot{Y}	f	Caps Lock	0x3A	
160	A0		á	Num Lock	0x45	
161	A1	i	í	Left Alt	0x38	
162	A2	¢	ó	Left Ctrl	0x1D	
163	A3	£	ú	Left Shift	0x2A	
164	A4	-	ñ	Right Shift	0x36	
165	A5	$¥$	Ñ	Print Screen	n/a	
166	A6	I	a	Tab	0x0F	
167	A7	§	-	Shift Tab	0x8F	
168	A8		¿	Enter	0x1C	
169	A9	©	-	Esc	0x01	
170	AA	a	\neg	Alt Make	0x36	
171	AB	«	$1 / 2$	Alt Break	0xB6	
172	AC	7	$1 / 4$	Control Make	0x1D	
173	AD		i	Control Break	0x9D	
174	AE	${ }^{\text {® }}$	"	Alt Sequence with 1 Character	0x36	
175	AF	-	"	Ctrl Sequence with 1 Character	0x1D	
176	B0	-	\%			
177	B1	\pm	衰			
178	B2	${ }^{2}$				
179	B3	3				
180	B4	,	-			
181	B5	μ	=			
182	B6	I	-			
183	B7	.	π			
184	B8	,	7			
185	B9	1	\pm			
186	BA	-	\\|			
187	BB	"	7			
188	BC	$1 / 4$	」			
189	BD	1/2	ل1			
190	BE	3/4	\pm			
191	BF	i	7			
192	C0	À	L			
193	C1	Á	\perp			
194	C2	Â	T			
195	C3	Ã	F			
196	C4	Ä	-			
197	C5	A	í			
198	C6	Æ	F			
199	C7	Ç	-			

Extended ASCII Characters（Continued）					
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code
200	C8	È	L		
201	C9	É	「		
202	CA	Ê	$\xrightarrow{\text { IL }}$		
203	CB	Ë	T		
204	CC	ì	It		
205	CD	Í	$=$		
206	CE	Î	\pm		
207	CF	İ	$\stackrel{1}{1}$		
208	D0	Đ	II		
209	D1	Ñ	〒		
210	D2	Ò	π		
211	D3	Ó	II		
212	D4	Ô	t		
213	D5	Õ	F		
214	D6	Ö	π		
215	D7	\times	\＃		
216	D8	\varnothing	\＃		
217	D9	Ù	」		
218	DA	Ú	Γ		
219	DB	Û			
220	DC	Ü	\square		
221	DD	Ý			
222	DE	P	I		
223	DF	B	－		
224	E0	à	a		
225	E1	á	B		
226	E2	â	Γ		
227	E3	ã	π		
228	E4	ä	Σ		
229	E5	å	σ		
230	E6	æ	μ		
231	E7	¢̧	T		
232	E8	è	Φ		
233	E9	é	Θ		
234	EA	ê	Ω		
235	EB	ë	δ		
236	EC	ì	∞		
237	ED	í	φ		
238	EE	î	ε		
239	EF	ï	\cap		
240	F0	ð	三		
241	F1	ñ	\pm		
242	F2	ò	\geq		
243	F3	ó	\leq		
244	F4	ô	1		
245	F5	õ	I		
246	F6	ö	\div		
247	F7	\div	\approx		
248	F8	\varnothing	－		
249	F9	ù	．		
250	FA	ú	\cdot		
251	FB	û	\checkmark		

Extended ASCI Characters (Continued)						
DEC	HEX	CP 1252	ASCII	Alternate Extended	PS2 Scan Code	
252	FC	ü	n			
253	FD	\dot{y}	2			
254	FE	p	-			
255	FF	\ddot{y}				

ISO 2022/ISO 646 Character Replacements

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, select the code page with which the bar codes were created. The data characters should then appear properly.

Code Page Selection Method/Country	Standard	Keyboard Country	Honeywell Code Page Option
United States (standard ASCII)	ISO/IEC 646-IRV	n/a	1
Automatic National Character Replacement	ISO/IEC 2022	n/a	2 (default)
Binary Code page	n/a	n/a	3
Default "Automatic National Character replacement" will select the below Honeywell Code Page options for Code128, Code 39 and Code 93.			
United States	ISO/IEC 646-06	0	1
Canada	ISO /IEC 646-121	54	95
Canada	ISO /IEC 646-122	18	96
Japan	ISO/IEC 646-14	28	98
China	ISO/IEC 646-57	92	99
Great Britain (UK)	ISO /IEC 646-04	7	87
France	ISO /IEC 646-69	3	83
Germany	ISO/IEC646-21	4	84
Switzerland	ISO /IEC 646-CH	6	86
Sweden / Finland (extended Annex C)	ISO/IEC 646-11	2	82
Ireland	ISO /IEC 646-207	73	97
Denmark	ISO/IEC 646-08	8	88
Norway	ISO/IEC 646-60	9	94
Italy	ISO/IEC 646-15	5	85
Portugal	ISO/IEC 646-16	13	92
Spain	ISO/IEC 646-17	10	90
Spain	ISO/IEC 646-85	51	91

Dec			35	36	64	91	92	93	94	96	123	124	125	126
Hex			23	24	40	5B	5 C	5D	5 E	60	7B	7 C	7D	7 E
US	0	1	\＃	\＄	＠	［	1	］	\wedge	－	\｛	｜	\}	\sim
CA	54	95	\＃	\＄	à	â	¢	ê	î	ô	é	ù	è	û
CA	18	96	\＃	\＄	à	â	Ç	ê	É	ô	é	ù	è	û
JP	28	98	\＃	\＄	＠	［	¥	］	\wedge	，	\｛	｜	\}	－
CN	92	99	\＃	¥	＠	［	1	］	\wedge		\｛	｜	\}	－
GB	7	87	£	\＄	＠	［	1	］	\wedge	－	\｛	1	\}	～
FR	3	83	£	\＄	à	。	ç	§	\wedge	μ	é	ù	è	．
DE	4	84	\＃	\＄	§	Ä	Ö	Ü	\wedge	，	ä	ӧ	ü	B
CH	6	86	ù	\＄	à	é	Ç	ê	î	ô	ä	ӧ	ü	û
SE／FI	2	82	\＃	x	É	Ä	Ö	Å	Ü	é	ä	ӧ	å	ü
DK	8	88	\＃	\＄	＠	A	\varnothing	Å	\wedge	－	æ	\varnothing	å	\sim
NO	9	94	\＃	\＄	＠	A	\varnothing	Å	\wedge	－	æ	\varnothing	å	．
IE	73	97	£	\＄	Ó	É	Í	Ú	Á	ó	é	í	ú	á
IT	5	85	£	\＄	§	。	Ç	é	\wedge	ù	à	ò	è	i
PT	13	92	\＃	\＄	§	Ã	Ç	Õ	\wedge		ã	¢̧	õ	－
ES	10	90	\＃	\＄	§	i	Ñ	¿	\wedge		。	ñ	ç	\sim
ES	51	91	\＃	\＄		i	Ñ	Ç	¿			ñ	¢̧	．
$\begin{aligned} & \text { 联 } \\ & 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			ISO	C 6	ati	C	ter	pa	ent					

Unicode Key Maps

6E $70717273 \quad 74757677 \quad 78797 \mathrm{Al}$ 7B	7C 7D 7E	
010203040506070809 OA OB OC OD OF	4B 5055	5A 5F 6469
$10 \quad 111213141516171819$ 1A 1B 1C 1D	4C5156	5B 6065
1E 1F $20212223242526272829 \quad 2 \mathrm{C}$		5C 6166
2C 2E 2F $3031323334353637 \times 39$	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{BC} \quad 3 \mathrm{D}$	4F 5459	$63 \quad 68{ }^{6 C}$

104 Key U.S. Style Keyboard

6E $70717273 \quad 74757677 \quad 78797 \mathrm{7a} \mathrm{7B}$	7C 7D 7E	
010203040506070809 OA OB OC OD OF	4 B 5055	5A 5F 6469
10111213141516171819 1A 1B 1C 12 C	4C 5156	5B 6065
1E 1F 2021222324252627282924		$5 \mathrm{C} 616^{6 A}$
2C 2D 2E 2F 3031323334353637	53	5D 6267
$3 \mathrm{~A} 3 \mathrm{BC} \quad 3 \mathrm{Cl}$	4F 5459	6368

105 Key European Style Keyboard

Sample Symbols

UPC-A

01234567890

9780330290951

Code 128

BC321

Interleaved 2 of 5

1234567890

Codabar

A13579B

Code 93

123456-9\$

Code 2 of 5

123456

Matrix 2 of 5

Sample Symbols

Test Message

QR Code

OCR-A with Modulo 10 check character

5324277

Programming Chart

$||||||||||||||||||||||||||||\mid$

5

Programming Chart

Note: If you make an error while scanning the letters or digits (before scanning Save), scan Discard, scan the correct letters or digits, and Save again.

Honeywell Scanning \& Mobility
9680 Old Bailes Road
Fort Mill, SC 29707
www.honeywellaidc.com

