Lz
=
—
—
<L
o
T
=
o

MC45
NFC PROGRAMMING GUIDE

MNO00145A02
Rev. A
February 2015

ii MC45 NFC Programming Guide

© 2015 Symbol Technologies, Inc.

No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means,
without permission in writing from Zebra. This includes electronic or mechanical means, such as photocopying,
recording, or information storage and retrieval systems. The material in this manual is subject to change
without notice.

The software is provided strictly on an “as is” basis. All software, including firmware, furnished to the user is on
a licensed basis. Zebra grants to the user a non-transferable and non-exclusive license to use each software
or firmware program delivered hereunder (licensed program). Except as noted below, such license may not be
assigned, sublicensed, or otherwise transferred by the user without prior written consent of Zebra. No right to
copy a licensed program in whole or in part is granted, except as permitted under copyright law. The user shall
not modify, merge, or incorporate any form or portion of a licensed program with other program material, create
a derivative work from a licensed program, or use a licensed program in a network without written permission
from Zebra. The user agrees to maintain Zebra’s copyright notice on the licensed programs delivered
hereunder, and to include the same on any authorized copies it makes, in whole or in part. The user agrees not
to decompile, disassemble, decode, or reverse engineer any licensed program delivered to the user or any
portion thereof.

Zebra reserves the right to make changes to any software or product to improve reliability, function, or design.

Zebra does not assume any product liability arising out of, or in connection with, the application or use of any
product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any Zebra intellectual
property rights. An implied license only exists for equipment, circuits, and subsystems contained in Zebra
products.

Zebra and the Zebra head graphic are registered trademarks of ZIH Corp. The Symbol logo is a registered
trademark of Symbol Technologies, Inc., a Zebra Technologies company.

Zebra Technologies Corporation
Lincolnshire, IL U.S.A
http://www.zebra.com

http://www.zebra.com

Revision History

Changes to the original guide are listed below:

Change Date Description

Rev A 10/2013 | Initial release

Rev A 2/2015 Zebra rebranding

v MC45 NFC Programming Guide

TABLE OF CONTENTS

REVISION HISTOIY ... e e e e e e e e e e e e ee e s e e e e e eeeeeeans e e eaaseeeaeaeennes iii

About This Guide

[g) 0 To (Lo {To] o [P RTRTTT i
Chapter DESCIIPLIONScooviieieieeeeeeeee e —— [
[\Lo) ez 1 (o] g b=1 I @ o] 1Y/ 11 (0] g = ii
Y=Y aVA(eT= T [k o] 41= 11 o) o T ii

Chapter 1: Functions

1] To (VT i o] o RN OO P RSP PPP PP 1-1
[N L O [1 (TP PP PP URPPRTPI 1-1
NFC_DEINIT() -evreeeiettetee ettt ettt e e e e et e e et e e e e e e e st e e e nnee s 1-3
| O C 1= AV =T 51 o] o [PRSP PPPPPP PP 1-4
NFC_GetCapabiliI@S() .. .cuuveeeeeeeeeeiii it e e e 1-5
[N L O 1=t (o] o1 T) SRS 1-6
NFC_SetCoNnfig() eeeeeeeiiiiiiiiiiiiiii e 1-7
NFC_SetDefaultConfig()cooovviiiiiiieieeeeee 1-8
NFC_RegisterForConfigChange() ...cc.uveeeeeeeeiiiiiiie e e e e e e 1-9
NFC_CIOSEHANAIE() .ot e e e e e e e e e e 1-10
NFC_CIOSEAIHANAIES() ..uevteeeeeeeeeeieiite et e e e e e e e e e 1-11
NFC_RegisterForTagDeteCtion()c..ueeiieiiiiiiiiiee e 1-12
NFC_RegisterFOrMessage()coovviiiiiiiiiieiiee e, 1-14
NFC_GEtRECOMA() woviiiiiiiiiiiieeeiee e 1-16
NFC_GetEnclosedMessagelnfo()c.uueeieireeeiiieiiiee et e e e e e e e e e e e e nnnes 1-18
NFC_GetMeSSagECONTENT() ..eeeeiiiiiiiiiiiiiiee ettt e e e e e e e e e 1-20
NFC_CreateMESSAGE() .. eeeeruureeeaiiiiieeaiiiie e ettt e ettt e e ettt e e s ettt e e s sbe e e e e s ane e e e aanbeeee s aneeeeeeanneeas 1-22
[N L O e [o | LT oTo] (o [RSP SR 1-23
NFC_WIItEMESSAGE() .oovveeiieiiieiieee e 1-25
NFC_ExchangeData()oooviviiiiiiii 1-27
NFC_NDEFFOIMAL() +oieeeiiiiiiiiiee ettt e e e e e e et e e e e e e e e aee e e e e e e e enns 1-28
NFC_MaKEREAAONIY() -.veeeeiiiiiieeiiiiie ettt et e et e e st e e e e ennee e e e anneas 1-30

N RO 02T ol = 0 0181 o) g 1 A d =T 1-32

yi MC45 NFC Programming Guide

NFC_RegisterForHostCardEmMUIAtioN()ccccccieuuuuiumiiiiiiiiiiiiiiiieieieeeeres e eeeeeeeee e eeeeeeeees 1-32
N L O =t P= T o =T O o (SRR 1-34
N | O 9 1S3= T o) T O = SRR 1-35
NFC Bluetooth Pairing APIS ...t e e e e e 1-36
NFC_ENabIEBTPAINNG() +.eeeeeeeiiiiiiieiiieee ettt e e e et e e e e e e e e e e eae s 1-36
NFC_DisSableBTPaINNG() .eeeeeeeiiiuieiieeieeeiiiiiiie et e e e e e e e e s st e e e e e e e annnneeeaee s 1-37
Chapter 2: Callback Prototypes
1] (oo 11 T3 1T o R 2-1
NFC_Config_CallbDackcooiiiiiiiiiiiii ettt esse e s s e sennneees 2-1
NFC_CE_CaAlIDACKuuiiiiiiiiee ettt e e e e e e e e e e e e e e e nn e eeeeeeasannnnneeeeas 2-2
N L O = B O 11| o 7T PRI 2-3
NFC_TagDetection _Callbackccooiiiiiiiiiii e renaeaaaees 2-4
NFC_Message Callbackcoooiiiiiiiiiiiiiii e e e aareaassaassseesneees 2-5
Chapter 3: Structures
1] (e Te 1B Tex 1T} o HN PP PPP PR 3-1
NFC_HANDLE ...ttt e e e e e ettt e e e e e e s et e e e e e e e eannnneneeeeeeeaeaannneeeeenn 3-1
STRUGCT _INFO oottt ettt e e e e e e e et e e e e e e e eanstaeeeeeeeeaaasnsnneeeaaaeeesaneees 3-1
N L O V=T = 1o o PSR 3-2
N | L O 00T o1 e P PRR PRSP 3-2
NFC RECOI ... e et bt a e e s s b e s s beasssensreaeaeaees 3-3
NN L O 1= To 1= OSSO OO 3-4
NFC Cap S IUCE ... b e e baa e b assbaesbeasssessrasaeeeeens 3-5
| O = To | [o T PP PP PPPPPPPPP 3-7
NFC_BTP@IMNGINTO ...t e e e e e 3-8
Chapter 4: Return Values
1] (oo [H T3 1T o R 4-1
N L O 1N 1 PRSP 4-1
Chapter 5: Programming Overview
1] (e To 1B Tex 1T} o NN PP PR 5-1
N | O @] 401 oTo] o 1T o] S P PP P PP PP PTPT 5-1
NFC Programming OVEIVIEWcoeiiiiiiiiiiiiieeee ettt e e e e et e e e e s e r e e e e e e e e s e e e e e e e e eennneas 5-2
NFC Stack Initialization & De-Initialization ..o 5-2
NFC Capabilities of the SYStem ... 5-2
Configuring NFC oo 5-2
NFC Radio and PoOIliNGcoooiiiiiiiiiii ettt e s e s s e esssesseesenneee s 5-3
Configuring Application Types and Modescooooiiiiiiiiiiii i 5-4

NDEF IMESSAJEceiiiiiiiiiee ittt e e e et e e e e e e e e et e e e e e e e e e e e e e e e e e s e e an 5-11

ABOUT THIS GUIDE

Introduction

This guide describes the Zebra Application Programmer’s Interface (API) which provides a way for application
developers to programmatically access the NFC stack functionality and aids in new application development.

The main features of NFC software stack are:

e Supports NFC functionality such as NFC card reader and card emulation.

e Supports identification, reading and writing to the following tags:
¢ NFC tag types 1-4
e Mifare
e Calypso
¢ 1SO 15693 NXP i-CODE
¢ Felica
e Tl TaglT.

Chapter Descriptions

Topics covered in this guide are as follows:

e Chapter 1, Functions provides a detailed overview of all of the functions available for MC45 NFC
programming including a description, function prototype, parameters, return values, comments and an
example for each function.

e Chapter 2, Callback Prototypes provides information on all of the available callback functions for MC45 NFC
programming including a description, function prototype, parameters, and return values for each function.

* Chapter 3, Structures describes the available structures for MC45 NFC programming including a description
and structure definition for each.

e Chapter 4, Return Values provides a table of all possible return values along with a description of each.

e Chapter 5, Programming Overview provides an overview of NFC programming giving step-by-step
procedures and examples on how to initialize and deinitialize the NFC stack, view the NFC capabilities of the

ii MC45 NFC Programming Guide

system, NFC configuration, NFC radio and polling services, configuring application types and modes and
creating/reading NDEF messages.

Notational Conventions

The following conventions are used in this document:

e Jtalics are used to highlight the following:
¢ Chapters and sections in this and related documents
* Dialog box, window and screen names
* Drop-down list and list box names
* Check box and radio button names

* |cons on a screen.

¢ Bold text is used to highlight the following:
* Key names on a keypad
e Button names on a screen or window.
e bullets (+) indicate:
e Action items
¢ Lists of alternatives
e Lists of required steps that are not necessarily sequential

e Sequential lists (e.g., those that describe step-by-step procedures) appear as numbered lists.

\/ NOTE This symbol indicates something of special interest or importance to the reader. Failure to read the note
will not result in physical harm to the reader, equipment or data.

CAUTION This symbol indicates that if this information is ignored, the possibility of data or material damage may
/ i \ occur.

WARNING! This symbol indicates that if this information is ignored the possibility that serious personal
A injury may occur.

Service Information

If you have a problem with your equipment, contact Zebra Global Customer Support for your region. Contact
information is available at: http://www.zebra.com/support.

When contacting Zebra Global Customer Support, please have the following information available:
e Serial number of the unit
¢ Model number or product name
e Software type and version number.
Zebra responds to calls by E-mail, telephone or fax within the time limits set forth in support agreements.

If your problem cannot be solved by Zebra Global Customer Support, you may need to return your equipment
for servicing and will be given specific directions. Zebra is not responsible for any damages incurred during

About This Guide iii

shipment if the approved shipping container is not used. Shipping the units improperly can possibly void the
warranty.

If you purchased your business product from a Zebra business partner, contact that business partner for
support.

iv MC45 NFC Programming Guide

CHAPTER1 FUNCTIONS

Introduction

This chapter provides a detailed overview of all of the functions available for MC45 NFC programming
including a description, function prototype, parameters, return values, comments and examples.

NFC_Init()

Description

Initializes the NFC stack. This needs to be called before any other NFC APls.

Function Prototype

NFC_STATUS NFC_lInit (void)

Parameters

None
Return Values

NFC_SUCCESS
NFC_ERROR_OUT_OF RESOURCE
NFC_ERROR_DLL_NOT_AVAILABLE
NFC_ERROR_NOT_SUPPORTED
NFC_FAILED

Comments

NFC_SUCCESS in case of success.
Out of resources like memory.

NFC Stack DLL has not been loaded.
NFC is Not Supported on the terminal.

If any other error occurs.

Individual firmware version, stack version, etc. can be obtained through NFC_GetCapabilities.

1-2 MC45 NFC Programming Guide

See Also
NFC_Delnit()

Example

/* Initialize the NFC stack */

if (nStatus = NFC Init() != NFC SUCCESS)
{

printf ("Error %d: Cannot initialize the NFC stack.\n", nStatus);

exit ();

Functions 1-3

NFC_Delnit()

Description

De-initializes the NFC stack. Any open handles will be closed by the NFC stack.

Function Prototype

NFC_STATUS NFC_Delnit(void)

Parameters

None

Return Values

NFC_SUCCESS NFC_SUCCESS in case of success.
NFC_FAILED If any error occurs.

Comments

None

See Also

NFC_Init()

Example

/* De-Initialize the NFC stack */
if (nStatus = NFC DeInit () != NFC_SUCCESS)
{
printf ("Error %d: DeInit NFC stack.\n", nStatus);

return -1;

1-4 MC45 NFC Programming Guide

NFC_GetVersion()

Description

This function obtains the version information of the NFC stack.

Function Prototype

NFC_STATUS NFC_GetVersion (NFC_Version *pNfcVersion)
Parameters

[out] pNFCVersion A pointer of NFC_Version passed to the function. The function returns the
consolidated version number of the NFC Stack.

Return Values

NFC_SUCCESS Indicates success
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Ex. memory)
NFC_FAILED If any error occurs

Comments

Individual firmware version, stack version, etc. can be obtained through NFC_GetCapabilities.

See Also
NFC_GetCapabilities

Example
/* Initialize the NFC stack */
if (nStatus = NFC_GetVersion (&nfcVersion) != NFC_ SUCCESS)

{
printf ("Error %d: Failed to get NFC Version.\n", nStatus);

exit () ;

Functions 1-5

NFC_GetCapabilities()

Description

This function returns the capabilities of the stack, the version number of the firmware, the vendor name, etc.
The capabilities are stored in a structure.

Function Prototype

NFC_STATUS NFC_GetCapabilities (NFC_CapStruct *pCapabilities)
Parameters

[out] pCapabilties A pointer to a structure for receiving the capability values.

Return Values

NFC_SUCCESS Indicates success.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any error occurs.

Comments

None

See Also

None

Example

NFC CapStruct capValues;
NFC_STATUS status;
status = NFC_GetCapabilities (&capValues) ;

1-6 MC45 NFC Programming Guide

NFC_GetConfig()

Description

This function returns the current configuration values of the stack.

Function Prototype

NFC_STATUS NFC_GetConfig (NFC_Config *psConfigValues)
Parameters

[out] psConfigValues The configuration values.

Return Values

NFC_SUCCESS Indicates success.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any error occurs.

Comments

None

See Also

NFC_SetConfig()

Example

NFC Config configValues;

NFC_STATUS status;

status = NFC_GetConfig(&configValues) ;

Functions 1-7

NFC_SetConfig()

Description

This function sets configuration values for the stack. See NFC_Version on page 3-2 for the values that can be
configured.

Function Prototype

NFC_STATUS NFC_SetConfig (NFC_Config sConfigValues)
Parameters

[in] psConfigValues The configuration values.

Return Values

NFC_SUCCESS The operation is performed successfully.
NFC_ERROR_BAD_PARAMETER A wrong value is detected for a parameter.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error occurs.

Comments

Important: Before modifying the configuration, you must first obtain the system configuration with properly
populated fields using NFC_GetConfig(), and then continue to modify the required fields. Subsequently, set the
configuration using NFC_SetConfig().

See Also
NFC_GetConfig(), NFC_SetDefaultConfig(), NFC_RegisterForConfigChange()

Example
NFC Config configValues;
NFC_STATUS status;

If (NFC_GetConfig(&configValues) == SUCCESS)

{
configValues.PollingTimeout = 60;
configValues.passkey = {'1',"'1','1"','1"','\0"};
If (NFC_SetConfig(configValues) != SUCCESS)
{

1-8 MC45 NFC Programming Guide

NFC_SetDefaultConfig()

Description

This function sets the default configuration values for the stack. The default configuration values are defined in
NFC_Version on page 3-2.

Function Prototype

NFC_STATUS NFC_SetDefaultConfig (Void)

Parameters

None

Return Values

NFC_SUCCESS The operation is performed successfully.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error occurs.

Comments

None

See Also

NFC_SetConfig()

Example
NFC_ STATUS status;
status = NFC_SetDefaultConfig();

Functions 1-9

NFC_RegisterForConfigChange()

Description

This function registers a callback that needs to be invoked whenever a configuration is changed by another
application. This is usually used to indicate if the other application changed configuration.

Function Prototype

NFC_STATUS NFC_RegisterForConfigChange (NFC_Config_Callback *pHandler,PVOID
pPassbackParameter, NFC_HANDLE*phConfigChangeHandle)

Parameters
[in] pHandler A pointer on the handler function invoked when any configuration
changes.
[in] pPassbackParameter A parameter transmitted to the handler function.

[out] phConfigChangeHandle A pointer on a variable valued with the handle of the registration.
This value may be used with NFC_CloseHandle() to unregister the
handler function.

Return Values

NFC_SUCCESS The operation is performed successfully.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error occurs.

Comments

None

See Also

None

Example

NFC_Handle configChangeHandle;
NFC STATUS status;

status = NFC_RegisterForConfigChange (configChangeHandler, NULL,
configChangeHandle) ;

1-10 MC45 NFC Programming Guide

NFC_CloseHandle()

Description

Frees the resources allocated for a handle. The handle becomes invalid after the call to NFC_CloseHandle().
Using this handle subsequently will cause an error.

Function Prototype

NFC_STATUS NFC_CloseHandle (NFC_HANDLE hHandle)
Parameters

[in] hHandle The handle of the connection to close.

Return Values

NFC_SUCCESS NFC_SUCCESS in case of success.

NFC_ERROR_BAD_HANDLE A bad handle value is detected.

NFC_FAILED Indicates if any other errors.
Comments

The following handles may be used with NFC_CloseHandle():

* The event registry handles. Closing an event registry handle causes the un-registration of the event
handler function.

¢ The connection handles.

e The NFC message handles.

See Also
NFC_CloseAllHandles()

Example

NFC_HANDLE aTagEventRegistry;
/* Register TAG handler */

/* Un-Register TAG handler */
NFC CloseHandle (aTagEventRegistry) ;

Functions 1-11

NFC_CloseAllHandles()

Description

Frees the resources allocated by all handles in the application. The handles become invalid after the call to
NFC_CloseAllHandles(). Using those handles subsequently will cause an error.

Function Prototype

NFC_STATUS NFC_CloseAllHandles (void)

Parameters

None

Return Values

NFC_SUCCESS NFC_SUCCESS in case of success.
NFC_FAILED Indicates if any other errors.
Comments
None
See Also

NFC_CloseHandle()

Example

// Close all Handles
NFC CloseAllHandles();

1-12 MC45 NFC Programming Guide

NFC_RegisterForTagDetection()

Description

This function registers a handler function to listen to tag detection. After a successful registration, the handler
function is called each time a tag is detected. NFC_CloseHandle() should be called to unregister the function.

If TagsToBeDetected is set to null, every tag supported by the stack is detected.

Function Prototype

NFC_STATUS NFC_RegisterForTagDetection (NFC_ TagDetection _Callback *pHandler, PVOID
pPassbackParameter, const NFC_Tags TagsToBeDetected, NFC_HANDLE *phTagDetectionHandle)

Parameters
[in] pHandler A pointer on the handler function called to listen to the tag detection.
[in] pPassbackParameter A parameter transmitted to the handler function.
[in] TagsToBeDetected A structure with TRUE values corresponding to type of tags to be

detected.

[out] phTagDetectionHandle A pointer on a variable valued with the handle of the registration. This
value may be used with NFC_CloseHandle() to unregister the
handler function.

Return Values

NFC_SUCCESS NFC_SUCCESS in case of success.
NFC_ERROR_BAD_PARAMETER A bad parameter value.
NFC_ERROR_FEATURE_NOT_SUPPORTED The requested feature is not supported.

NFC_ERROR_OUT_OF RESOURCE Out of resources. (Example: memory).
NFC_FAILED Indicates if any other errors.
Comments

Calling this function turns on the NFC radio if it is off and starts the polling process for all registered
technologies.

See Also
NFC_GetCapabilities()

Example

/* Register tag event handler */
NFC Tags TagsToBeDetected;
TagsToBeDetected.MiFareUL = TRUE;
TagsToBeDetected.MiFareStd = TRUE;
TagsToBeDetected.IS014443A = TRUE;

Functions 1-13

NFC_STATUS nStatus = NFC_RegisterForTagDetection(static TagDetectionHandler,
NULL, TagsToBeDetected, &hTagDetectionHandle) ;

/* Get the result of the tag detection */

void static_TagDetectionHandler (void *pPassbackParameter, NFC HANDLE
hConnection,

NFC TagInfo TagInfo, NFC STATUS nStatus)
{
/* Perform tag operations based on detected tag*/

If (TagInfo.TagsAndProtocols.MiFareUL == TRUE)
{

}
else if (TagInfo.TagsAndProtocols.MiFareStd == TRUE)
{
}

1-14 MC45 NFC Programming Guide

NFC_RegisterForMessage()

Description

Retrieves NDEF messages from NFC tags. The function registers a callback function to be called each time a
matching message is read from a tag. Value 'zero' for nTNF, registers for all NDEF messages. A valid value in
nTNF and NULL for pTypesArray, registers for all types of the registered TNF format.

The un-registration is done by closing the handle returned in the NDEFMessageRegistrationHandle parameter
using NFC_CloseHandle().

Function Prototype

NFC_STATUS NFC_RegisterForMessage (NFC_Message _Callback* pHandler,
PVOID pPassbackParameter, WORD nTNF, const TCHAR* pTypesArray[], WORD nNoOfTypes,
NFC_HANDLE* NDEFMessageRegistrationHandle)

Parameters

[in] pHandler A pointer on the handler function.

[in] pPassbackParameter A parameter transmitted to the handler function.

[in] NnTNF The message TNF value. An nTNF value of 0 indicates
registration for all NDEF messages. The valid values for
nTNF are: TNF-WKT (Well-Known Type), TNF-MIME,
TNF-AbsURI, TNF-EXT (External Type) and TNF-UNK
(Unknown Type).

[in] pTypesArray An array of types to filter for. A value of NULL indicates
registration for all types with TNF value indicated by nTNF.
[in] nNoOfTypes No. of types to filter for; the types are in pTypesArray.

[out] NDEFMessageRegistrationHandle A pointer on a variable valued with the handle of the
registration. This value may be used with
NFC_CloseHandle() to unregister the handler function.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_PARAMETER A bad parameter value.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error occurred.

Comments

NFC_RegisterForMessage registers for reading message present on any type of tag (Type 1, 2, 3, 4). The TNF
and Type of the first record in the message is considered for comparing with the registered TNF and Types.

Calling this function turns on the NFC radio if it is off and starts the polling process for all technologies.

Functions 1-15

Several handlers can be registered at the same time, allowing the registration of separate handlers for the
same or different messages types. If a received message matches several registered handlers, all the
matching handlers are called in sequence.

Each handler should call the function NFC_CloseHandle() to allow further call to the other listeners.

See Also
NFC_RegisterForTagDetection()

Example

/* Register NDEF Message handler */
NFC Handle hMessageDetectionHandle;
Char NDEFType Spl[] = "Sp";

Char *TypesArray[l] = NDEFType Sp;
{

NFC_STATUS nStatus = NFC RegisterForMessage (static NDEFMessageHandler, NULL,
TNF _WKT, TypesArray, 1, &hMessageDetectionHandle);

}
/* Get the result of the message detection */

void static NDEFMessageHandler (void* pPassbackParameter,

NFC HANDLE hConnection, NFC HANDLE hMessageHandle, WORD nTNF, WORD nNoOfRecords,
DWORD nPayloadLengths[], WORD nTypelLengths[], WORD nIDLengths|[],

NFC_STATUS nStatus)

{
/* Get the values of the No. of Records, Payload lengths, Type lengths, etc,*/

1-16 MC45 NFC Programming Guide

NFC_GetRecord()

Description

This function retrieves information about a record.

Function Prototype

NFC_STATUS NFC_GetRecord (NFC_HANDLE hMessageHandle, WORD nRecordNo, WORD *tnf,
PCHAR *pBuffer, PCHAR *pTypeString, PCHAR *pID)

Parameters

[in] hMessageHandle The message handle.

[in] nRecordNo The record no. in the message which has to be read.

[out] tnf TNF value of the record. Valid values for nTNF are: TNF-WKT
(Well-Known Type), TNF-MIME, TNF-AbsURI, TNF-EXT (External
Type) and TNF-UNK (Unknown Type).

[out] pBuffer Payload of the record.

[out] pTypeString Type Value of the record.

[out] pID ID value in the record.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_HANDLE A bad handle was detected.
NFC_ERROR_INCORRECT_RECORD_NO Incorrect record no. provided.
NFC_ERROR_BAD_NDEF_FORMAT Incorrect NDEF format.
NFC_ERROR_NDEF_UNKNOWN The NDEF message is unknown.
NFC_ERROR_OUT_OF RESOURCE Out of resources (Ex.memory).
NFC_FAILED If any other error had occurred.

Comments

If NULLs are passed for pTypeString, pBuffer and PID in the structure, those values are not returned.

See Also

None

Example

NFC HANDLE hMessageHandle;

WORD tnf;

CHAR Type[40], ID[40], Buffer[100];

/* To retrieve record */

Functions 1-17

if (NFC GetRecord(hMessageHandle, nRecordNo, &tnf, Buffer, Type, ID) !=
NFC_SUCCESS)

{
printf ("Error: NFC GetRecord failed !\n");

break;

/* Once done with Message handle */

NFC CloseHandle (hMessageHandle);

1-18 MC45 NFC Programming Guide

NFC_GetEnclosedMessagelnfo()

Description

Extracts message information enclosed in the payload of a record. Pointers to arrays of record handles,
payload lengths, types and IDs are filled with the information of the enclosed message.

Function Prototype

NFC_STATUS NFC_GetEnclosedMessagelnfo (NFC_HANDLE hMessageHandle, WORD nRecordNo,
NFC_HANDLE *phEnclMessageHandle, WORD *noOfRecords, WORD *pnTNF, DWORD
PayloadLength[], WORD TypeLength[], WORD IDLength[])

Parameters
[in] hMessageHandle Message handle of the record containing enclosed message.
[in] nRecordNo Record number of the message containing enclosed message.

[out] phEnclMessageHandle Message handle to the enclosed message.

[out] noOfRecord Number of records in the enclosed message.

[out] pnTNF TNF value of the first record.

[out] PayloadLength Lengths of payload in each record of the enclosed message.
[out] TypeLength Lengths of type in each record of the enclosed message.
[out] IDLength Lengths of ID in each record of the enclosed message.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_HANDLE A bad handle was detected.
NFC_ERROR_INCORRECT_RECORD_NO Incorrect record no. provided.

NFC_ERROR_OUT_OF_ RESOURCE Out of resources (Example: memory).

NFC_ERROR_BAD_NDEF_FORMAT Incorrect NDEF format.

NFC_ERROR_NDEF_UNKNOWN Unknown NDEF message format.

NFC_FAILED If any other error had occurred.
Comments

If NULLs are passed instead of pointers, those values are not returned.

Initially NULL can be sent for the arrays and number of records obtained. Subsequently, the function can be
called with array pointers.

The user has the values of TNF and TYPE of the record to determine if it has an enclosed message. E.g.: TNF
value of TNF-WKT and TYPE value of “Sp” for a record would let the user know as per the NFC-Forum
specification, that the record has an enclosed message.

Functions 1-19

See Also

None

Example

NFC HANDLE hMessageHandle, enclMessageHandle;
WORD noOfRecords, nTNEF;
/* Get info of the message enclosed in a record */

if (NFC GetEnclosedMessageInfo (hMessageHandle, nRecordNo, &enclMessageHandle,
&noOfRecords, &nTNF, NULL, NULL, NULL) == NFC_SUCCESS)

{
// Allocate arrays for required number of Records

if (NFC GetEnclosedMessageInfo ((hMessageHandle, nRecordNo,
&enclMessageHandle, &noOfRecords, &nTNF, PayloadLengths[], Typelengths|[],
IDLengths[]) != NFC_SUCCESS)

{
// ERROR

1-20 MC45 NFC Programming Guide

NFC_GetMessageContent()

Description

The function returns the binary buffer containing a message.

Function Prototype

NFC_STATUS NFC_GetMessageContent (NFC_HANDLE hMessage, PCHAR pMessageBuffer,
DWORD *pnActualBufferLength)

Parameters
[in] hMessage The message handle.
[out] pMessageBuffer A pointer on a buffer receiving the message content.

[out] pnActualBufferLength Length of the message.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_HANDLE A bad handle value.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error had occurred.

Comments

A call to this function with NULL for pMessageBuffer can be made to obtain the actual buffer length. Memory
can be allocated, and a call made to get the message content.

See Also

NFC_GetRecord()

Example
NFC HANDLE hMessage;
DWORD nMesageLength;

if (NFC_GetMessageContent (hMessage, NULL, &nMessageLength)== NFC SUCCESS)
{

//Allocate memory for the buffer
if (NFC_GetMessageContent (hMessage, pMessage, &nMessagelLength) != NFC SUCCESS)
{

printf("Error: NFC_GetMessageContent\n")

return;

Else

Functions 1-21

printf("Error: NFC_GetMessageContent\n") ;

return;

/* Once done with message handle */

NFC CloseHandle (hMessage);

1-22 MC45 NFC Programming Guide

NFC_CreateMessage()

Description

Creates a new NDEF message. The message created is a blank message. Call NFC_AddRecord() to add
records into the message.

Function Prototype

NFC_STATUS NFC_CreateMessage (NFC_HANDLE* phMessage)
Parameters

[out] phMessage A pointer on a variable valued with the handle of the new message.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_OUT_OF_RESOURCE Out of memory.
NFC_FAILED If any other error had occurred.

Comments

None

See Also

None

Example

NFC HANDLE hMessage;
if (NFC_CreateMessage (&hMessage) != NFC_SUCCESS)
{

printf ("Error: Cannot create the new message.\n");

Functions 1-23

NFC_AddRecord()

Description

This function adds a record to the message. This record is added to the tail end of the existing records in the
message.

Function Prototype

NFC_STATUS NFC_AddRecord (NFC_Record sRecord, NFC_HANDLE hMessageHandle)

Parameters
[in] sRecord Record structure containing information to be added as a record to the
message.
[in] hAMessageHandle Handle of the message to which the record has to be added.
Return Values
NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_HANDLE A bad handle value provided.
NFC_ERROR_BAD_NDEF_FORMAT Incorrect NDEF formatted record.
NFC_ERROR_OUT_OF_RESOURCE Out of memory.
NFC_FAILED If any other error occurred.
Comments
None
See Also
None
Example

NFC HANDLE hMessageHandle;

NFC Record NDEFRecord;

CHAR URI[] = {'m', 's', 'i', '.', '¢', 'Oo', 'm', '/', 'm', 'c', '4', '5', '"\0'};
DWORD nBufferLength;

NDEFRecord.Type = TYPE URI;
NDEFRecord.URIRecord.URIType = HTTP_ WWW;
NDEFRecord.URIRecord.Payload URI;

/* Creates a Message */
if (NFC_CreateMessage (&hMessageHandle) == NFC SUCCESS)
{

1-24 MC45 NFC Programming Guide

/* Creates a record using the buffer */
if (NFC_AddRecord (NDEFRecord, hMessageHandle) != NFC_ SUCCESS)
{
printf ("Error: Cannot Add Record.\n");
}

// Add further records

else

printf ("Error: Cannot create the new message.\n");

/* Done with the record handle */
NFC CloseHandle(hMessageHandle);

Functions 1-25

NFC_WriteMessage()

Description

This function writes a message to the current tag.

Function Prototype

NFC_STATUS NFC_WriteMessage (NFC_HANDLE hConnection, NFC_HANDLE *phMessage[],
WORD nNoOfMessages)

Parameters
[in] hConnection The connection handle.
[in] phMessage An array of message handles.
[in] nNoOfMessages Number of messages to be written.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ ERROR_BAD_HANDLE Bad handle provided.
NFC_ERROR_TAG_NOT_NDEF Tag is not NDEF compliant/format.
NFC_ERROR_TAG_DISCONNECTED Tag is no longer in proximity.
NFC_ ERROR_TAG_LOCKED Tag is locked for writing.
NFC_ERROR_TAG _WRITE Any other tag Write error.
NFC_ERROR_OUT_OF RESOURCE Out of resources (Example, memory).
NFC_FAILED If any other error had occurred.

Comments

Multiple message writing capability of the stack can be checked using NFC_GetCapabilities.

\/ NOTE Currently, only one NDEF message can be written.

See Also

None

Example
NFC_HANDLE hConnection;
NFC_ HANDLE hMessage([1l];

// Create Message and Add records

// Register for Tag

1-26 MC45 NFC Programming Guide

/* Write the message on TAG */
NFC WriteMessage (hConnection, &hMessage, 1);

/* All operations done with tag */
NFC CloseHandle (hConnection);
NFC CloseHandle (hMessage);

Functions 1-27

NFC_ExchangeData()

Description

This function exchanges raw data with the object accessible with this connection.

Function Prototype

NFC_STATUS NFC_ExchangeData (NFC_HANDLE hConnection, const PCHAR pReaderToTagBuffer,
DWORD nReaderToTagBufferLength, PCHAR pTagToReaderBuffer,
DWORD *nTagToReaderBufferMaxLength)

Parameters
[in] hConnection The connection handle.
[in] pReaderToTagBuffer A pointer on the buffer containing the data to send to the tag.
[in] nReaderToTagBufferLength The length in bytes of the data to send to the tag.
[out] pTagToReaderBuffer A pointer on the buffer receiving the data returned by the tag.

[in/out] pnTagToReaderBufferMaxLength ~ The maximum length in bytes of the buffer.
pTagToReaderBuffer as input, returns the actual read data.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ ERROR_BAD_HANDLE Bad handle provided.
NFC_ ERROR_COMMAND_NOT_SUPPORTED Command not supported response from tag.

NFC_ERROR_INVALID_PARAMETER Invalid parameter response from tag.
NFC_ERROR_TAG_DISCONNECTED Tag is no longer in proximity.
NFC_ERROR_OUT_OF_RESOURCE Out of resources (Example: memory).
NFC_FAILED If any other error had occurred.

Comments

None

See Also

None

Example

char pReaderToTagBuffer[] = {0x30, 0x04, 0x26, Oxee};
char pTagToReaderBuffer[8];
DWORD readLength = 8;

status = NFC_ExchangeData (hConnection, pReaderToTagBuffer, 4, pTagToReaderBuffer,
&readLength)

1-28 MC45 NFC Programming Guide

NFC_NDEFFormat()

Description

This function formats the tag as per NDEF.

A CAUTION This process is irreversible. Once a tag has been made 'read only', it cannot be used to write again.

Function Prototype

NFC_STATUS NFC_NDEFFormat (PCHAR *pScrtKey, WORD ScrtKeyLength,

NFC_HANDLE hConnection)

Parameters
[in] pScrtKey Buffer containing the Secret key.
[in] ScrtkeyLength Length of the secret key.
[in] hConnection Handle to the connection.

Return Values

NFC_SUCCESS

NFC_ ERROR_BAD_HANDLE
NFC_ERROR_TAG_ALREADY_ NDEF
NFC_ ERROR_TAG_DISCONNECTED
NFC_ERROR_INVALID_PARAMETER
NFC_ERROR_OUT_OF RESOURCE
NFC_FAILED

Comments

None

See Also

None

Example

Char scrtKey([10];

WORD scrtKeyLength,
NFC_HANDLE hConnection;
NFC_STATUS status;

// £ill in scrtKey and scrtKeyLength

The operation has started successfully.
Bad handle provided.

Tag is already NDEF compliant/format.
Tag is no longer in proximity.

Invalid parameter response from tag.
Out of resources like memory.

If any other error occurred.

Functions 1-29

status = NFC_NDEFFormat (scrtKey, scrtKeyLength, hConnection);

1-30 MC45 NFC Programming Guide

NFC_MakeReadOnly()

Description

This function makes the tag read-only.

A CAUTION This process is irreversible. Once a tag has been made 'read only', it cannot be used to write again.

Function Prototype

NFC_STATUS NFC_MakeReadOnly (PCHAR *pScrtKey, WORD ScrtKeyLength,

NFC_HANDLE hConnection)

Parameters
[in] pScrtKey Buffer containing the secret key.
[in] ScrtkeyLength Length of the secret key.
[in] hConnection Handle to the connection.

Return Values

NFC_SUCCESS

NFC_ ERROR_BAD_HANDLE
NFC_ERROR_TAG_ALREADY_ READONLY
NFC_ ERROR_TAG_DISCONNECTED
NFC_ERROR_OUT_OF RESOURCE
NFC_ERROR_INVALID_PARAMETER
NFC_FAILED

Comments

None

See Also

None

Example

Char scrtKey([10];

WORD scrtKeyLength;
NFC_ HANDLE hConnection;
NFC STATUS status;

// f£ill in scrtKey and scrtKeyLength

The operation has started successfully.
Bad handle provided.

Tag is already 'read only'.

Tag is no longer in proximity.

Out of resources (Example: memory).
Invalid parameter response from tag.

If any other error had occurred.

Functions 1 -31

status = NFC_MakeReadOnly (scrtKey, scrtKeyLength, hConnection);

1-32 MC45 NFC Programming Guide

NFC Card Emulation APIs

NFC_RegisterForHostCardEmulation()

Description

This function registers a card for emulation in the stack. Initially a blank card is setup in the stack and a
message handle is returned to the application. The application can add records to this message. When the
application has added all the records it wants, it can call NFC_EnableCE().

Function Prototype

NFC_STATUS NFC_RegisterForHostCardEmulation (NFC_Message _Callback* pHandler,
PVOID pPassbackParameter, DWORD cardSize, BOOL readAccess, BOOL writeAccess,
NFC_HANDLE* phRegistrationHandle, NFC_HANDLE* phMessageHandle)

Parameters

[in] pHandler A pointer on the handler function invoked, when an external reader has
made an update to the card.

[in] pPassbackParameter A parameter transmitted to the handler function.

[in] cardSize Size of the card to be emulated. The stack will allocate memory for this
size.
[in] readAccess True will provide read acesss to external readers. False will not provide

read access.

[in] writeAccess True will provide write acesss to external readers. False will not provide
write access.*

[out] A pointer on a variable valued with the handle of the registration. This

phRegistrationHandle value may be used with NFC_CloseHandle() to unregister the handler
function.

[out] phMessageHandle A pointer for the message handle.

Return Values

NFC_SUCCESS NFC_SUCCESS in case of success.
NFC_ERROR_BAD_PARAMETER A bad parameter value.
NFC_ERROR_FEATURE_NOT_SUPPORTED The requested feature is not supported.

NFC_ERROR_OUT_OF_RESOURCE Out of resources like memory.
NFC_FAILED If any other error occurs.
Comments

*Currently write access for the emulated host card is not supported. Parameters write_accesss, pHandler and
pPassbackParameter are available in the API as a place holder for future support.

Functions 1-33

See Also
NFC_GetCapabilities()

Example

{

nStatus = NFC_RegisterForHostCardEmulation (
NULL, //Not expecting callback, since write access is False
NULL, 512, True, False, &cardEmulRegistryHandle, &messageHandle);

If (nStatus == NFC_SUCCESS)
{
/* Add record and enable CE here */
NFC Record NDEFRecord;
CHAR URI[] = {'m', 's', 'i', '.', '¢', 'o', 'm', '/', 'm', 'c', '4', '5',
"\O'};
DWORD nBufferLength;
NDEFRecord.Type = TYPE URI;

NDEFRecord.URIRecord.URIType = HTTP WWW;
NDEFRecord.URIRecord.Payload = URI;
if (NFC_AddRecord (NDEFRecord, messageHandle) == NFC SUCCESS) }

{
NFC EnableCE (&ceHandle, CECallback, NULL, CE HOST);

1-34 MC45 NFC Programming Guide

NFC_EnableCE()

Description

Enables card emulation; the source of card emulation can be selected through CE_Source parameter. The
source can be UICC, embedded secure element or host. NFC_GetCapabilities can be used to verify the
supported sources.

Function Prototype

NFC_STATUS NFC_EnableCE (NFC_HANDLE* CEHandle, NFC_CE_Callback *pCallback,
PVOID pPassbackParameter, WORD nCE_Source)

Parameters
[out] CEHandle Handle to the registration.
[in] pCallback A pointer on the callback function.
[in] pPassbackParameter A parameter transmitted to the callback function.
[in] nCE_Source The source for CE.

Return Values

NFC_SUCCESS The operation is performed successfully.
NFC_ERROR_OUT_OF RESOURCE Out of memory.
NFC_ERROR_FEATURE_NOT_SUPORTED CE/ CE source not supported.
NFC_FAILED If any other error occurred.

Comments

None

See Also
NFC_DisableCE(), NFC_GetCapabilities()

Example

NFC Handle ceHandle;

NFC_STATUS status;

status = NFC EnableCE (&ceHandle, CECallback, NULL, CE UICC);

Functions 1-35

NFC _DisableCE()

Description

This function disables the card emulation.

Function Prototype

NFC_STATUS NFC_DisableCE (NFC_HANDLE CEHandle)
Parameters

[in] CEHandle Handle to the Registration.

Return Values

NFC_SUCCESS The operation is performed successfully.
NFC_ERROR_BAD_HANDLE Bad handle provided.
NFC_FAILED If any other error occurred.

Comments

None

See Also

NFC_EnableCE()

Example

NFC Handle ceHandle;

NFC_STATUS status;

status = NFC DisableCE (ceHandle) ;

1-36 MC45 NFC Programming Guide

NFC Bluetooth Pairing APIs

NFC_EnableBTPairing()

Description

This function enables Bluetooth Pairing through NFC.

Function Prototype

NFC_STATUS NFC_EnableBTPairing (NFC_HANDLE* BTHandle, NFC_BT_Callback *pCallback,
PVOID pPassbackParameter)

Parameters
[out] BTHandle Handle to the registration.
[in] pCallback A pointer on the callback function.
[in] pPassbackParameter A parameter transmitted to the callback function.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_OUT_OF RESOURCE Out of memory.
NFC_ERROR_FEATURE_NOT_SUPPORTED Feature not supported.
NFC_FAILED If any other error had occurred.

Comments

NFC radio is turned on, if not already on and polling process started for all types of tags/technologies.

The callback is invoked whenever a Bluetooth device has been paired through NFC.

See Also
NFC_DisableBTPairing()

Example

NFC Handle BTHandle;

NFC_STATUS status;

status = NFC_EnableBTPairing (&BTHandle, BTCallback, NULL);

Functions 1-37

NFC_DisableBTPairing()

Description

This function disables the Bluetooth Pairing through NFC.

Function Prototype

NFC_STATUS NFC_DisableBTPairing (NFC_HANDLE BTHandle)

Parameters

[in] BTHandle Handle to the Registration.

Return Values

NFC_SUCCESS The operation was performed successfully.
NFC_ERROR_BAD_HANDLE Bad handle provided.
NFC_FAILED If any other error had occurred.

Comments

None

See Also

NFC_EnableBTPairing()

Example

NFC Handle BTHandle;

NFC_STATUS status;

status = NFC DisableBTPairing (BTHandle) ;

1-38 MC45 NFC Programming Guide

CHAPTER2 CALLBACK PROTOTYPES

Introduction

This chapter provides information on all of the available callback functions for MC45 NFC programming
including a description, function prototype, parameters, and return values.

NFC_Config_Callback

Description

This is the type of the callback function to be implemented to receive changed configuration data.

Prototype

typedef void NFC_Config_Callback (PVOID pPassbackParameter, NFC_Config ConfigValues,
NFC_STATUS nResult)

Parameters
[in] pPassbackParameter The parameter given to the function initiating the operation.
[in] ConfigValues Structure containing the configuration values.
[in] nResult The result code of the operation.

NFC_SUCCESS in case of success.
The other error codes are described in the documentation of the
calling function.

Return Values

Not applicable.

2-2 MC45 NFC Programming Guide

NFC_CE_Callback

Description

This is the type of the callback function to receive notification of CE events.

Function Prototype

typedef void NFC_CE_Callback (PVOID pPassbackParameter, WORD nEventCode,
NFC_STATUS nResult)

Parameters
[in] pPassbackParameter The parameter given to the function registering the event handler.
[in] nEventCode The event code.
[in] nResult Result code of the operation:

NFC_SUCCESS in case of success.
The other error codes are described in the documentation of the
calling function.

Return Values

Not applicable.

Callback Prototypes 2-3

NFC_BT_Callback

Description

This is the type of the callback function to receive notification of Bluetooth pairing.

Function Prototype

typedef void NFC_BT_Callback (PVOID pPassbackParameter, NFC_BTPairinginfo PairedDevice,
NFC_STATUS nResult)

Parameters
[in] pPassbackParameter The parameter given to the function registering the event handler.
[in] PairedDevice The Bluetooth paired device information.
[in] nResult The result code of the operation:

NFC_SUCCESS in case of success:
The other error codes are described in the documentation of the
calling function.

Return Values

Not applicable.

2-4 MC45 NFC Programming Guide

NFC_TagDetection_Callback

Description

This callback function is needed to be provided through NFC_RegisterForTagDetection(). The handler function
is called each time a tag of the specified type is detected.

Function Prototype

typedef void NFC_TagDetection_callback (PVOID pPassbackParameter, NFC_HANDLE hConnection,
NFC_Taginfo Taginfo, NFC_STATUS nResult)

Parameters
[in] pPassbackParameter The value provided to the function NFC_RegisterForDetection())
when the registration was performed.
[in] hConnection The handle of the new connection with the tag.
[in] Taginfo A structure containing the information of the tag.
[in] nResult NFC_SUCCESS in case of success.

Another error code in case of error during the registration.

Return Values

Not applicable.

Callback Prototypes 2-5

NFC_Message_Callback

Description
This is the type of the handler function to be implemented to handle the detected NDEF messages.

This callback function is needed to be provided by NFC_RegisterForMessage() or
NFC_RegisterForHostCardEmulation()*. The handler function is called each time a tag with the specified
NDEF message type is detected or an external reader has updated the emulated card containing an NDEF
message.

Function Prototype

typedef void NFC_Message_Callback (PVOID pPassbackParameter, NFC_HANDLE hConnection,
NFC_HANDLE hMessageHandle, WORD nTNF, WORD nNoOfRecords, DWORD nPayloadLengths]],
WORD nTypeLengths[], WORD nIDLengths[], NFC_STATUS nResult)

Parameters

[in] pPassbackParameter The value provided to the function NFC_RegisterForMessage() or
NFC_RegisterForHostCardEmulation() when the registration was
performed.

[in] hConnection The handle of the new connection with the tag, in case of callback
from Card Emulation, this will be NULL.

[in] hMessageHandle Contains message handle of the message.

[in] nTNF TNF value of the first record in the message.

[in] nNoOfRecords No. of records in the message.

[in] nPayloadLengths]] Contains the lengths of payloads in an array.

[in] nTypeLengths]] Contains the lengths of type of each record in an array.

[in] nIDLengths]] Contains the length of ID of each record in an array.

[in] nResult NFC_SUCCESS in case of success:

Other error code in case of error during the registration.

Return Values

Not applicable.

Comments

* Currently host card emulation - write access is not supported, therefore callbacks due to update of emulated
card would not be invoked.

2-6 MC45 NFC Programming Guide

CHAPTER3 STRUCTURES

Introduction

This chapter describes the available structures for the MC45 NFC programming including a description and
structure definition.

NFC_HANDLE

Description

The type of the handles.

Structure Definition
typedef uint32 NFC_HANDLE

STRUCT_INFO

Description

The STRUCT _INFO structure enables extensibility of API structures. A STRUCT _INFO structure is embedded
in each structure of the API to describe the memory allocated and used by that structure. If the structure grows
in future revisions of the API, the STRUCT_INFO information can be used to determine which fields are valid
for use. Refer to Zebra EMDK v2.0 for details.

Structure Definition

typedef struct tagSTRUCT_ INFO
{

DWORD dwAllocated;

DWORD dwUsed;
} STRUCT_INFO;

3-2 MC45 NFC Programming Guide

NFC_Version

Description

This structure provides the major, minor and revision information of the API DLL.

Structure Definition

typedef struct NFC _version
{
STRUCT INFO structInfo;
WORD MajorVersion;
WORD MinorVersion;
WORD Revision;

} NFC_Version;

NFC_Config

Description

This structure has fields of various configurable parameters.

Structure Definition

typedef struct tagNFC Config
{
STRUCT INFO structInfo;
uintl6 PollingTimeout; // in sec, 0 - Timeout disabled, default : 90

char passkey[6]; // Max of 6 characters, First Character '/0' is no
Passkey (Default is No Passkey)

} NFC_Config;

Structures 3-3

NFC_Record

Description

This structure has fields for constructing various records. The record for URI and text can be created using
types TYPE_URI and TYPE_TEXT in the type field. All other record types can be created using
TYPE_GENERAL in the type field. Data for each type of the record can be filled with the corresponding union
structure. Refer to the programmer's guide for examples.

Structure Definition

typedef struct tagNFC Record
{
STRUCT INFO structInfo;
WORD Type;
union
{
struct
{
WORD TNEF;
PCHAR TYPE;
PCHAR 1ID;
WORD IDLength;
PCHAR Payload;
DWORD PayloadLength;
} General;
struct
{
WORD CharEncoding;
PCHAR Language;
PCHAR Payload;
DWORD PayloadLength;
} Text;
struct
{
WORD Type;
PCHAR Payload;
DWORD PayloadLength;
} URI;
} NFC_Record;

3-4 MC45 NFC Programming Guide

NFC_Tags

Description

This structure has fields of various tags. This structure is in APIs and also part of other structures. The
meaning of the individual fields set to true or false depends upon the context.

Structure Definition

typedef struct tagNFC Tags
{
STRUCT INFO structInfo;
BOOL MiFareUL;
BOOL MiFareStd;
BOOL MifareULC;
BOOL IS014443 4A;
BOOL 15014443 4B;
BOOL IS015693;
BOOL FeliCa;
BOOL Jewel;
BOOL Desfire;
BOOL MiFarePlus;
BOOL NXPIcode;
BOOL Topaz;
BOOL Calypso;
BOOL TITagIt;
} NFC Tags;

Structures 3-5

NFC_CapStruct

Description
This structure has further structures in its fields for conveying different capabilities.

* ModesSupported: The various modes supported by the stack are indicated through this structure. The
field set to true indicates the mode is supported, false indicates the mode is not supported.

e TagsSupported: The various tags/technologies supported are indicated through this structure. A field
set to true indicates the tag/technology is supported, false indicates the tag/technology is not supported.

* TagsFormattingSupported: The support for formatting various tags is indicated through this structure.
A field set to true indicates formatting that tag is supported, false indicates formatting the tag is not
supported.

¢ TagsMakeReadOnlySupported: The support for making various tags "read only" is indicated through
this structure. A field set to true indicates Making those types of tag 'read only' is supported, false
indicates making read only for those types of Tags is not supported.

¢ Devicelnformation: Specific details of the NFC chip used like - firmware version no., vendor name, etc.

Structure Definition

typedef Struct tagNFC CapStruct ({
STRUCT INFO structInfo;
Struct
{
BOOL NFC_P2P;
BOOL NFC Reader Writer;
BOOL NFC CE;
BOOL NFC CE UICC;
BOOL NFC_CE_SE;
BOOL NFC CE Host;
BOOL Multiple NDEFMessages;
BOOL NFC LLCP;
BOOL NFC_SNEP;
BOOL NFC_NPP;
BOOL NFC BT StaticHandover;
BOOL NFC BT DynamicHandover;

} ModesSupported;

NFC versionStackVersion;

NFC Tags TagsSupported;

NFC Tags TagsFormattingSupported;
NFC Tags TagsMakeReadOnlySupported;
enum

{
PN544C3 = 01;

3-6 MC45 NFC Programming Guide

} Device;

union
{
struct
{
uint32 hal version;
uint32 fw _version
uint32 hw version
uint8 model id;
uint8 hci version;
utf8 vendor name [VENDOR NAME LEN];
uint8 full version[NXP FULL VERSION LEN];
Nfc sSupProtocol ReaderSupProtocol;
/* < Supported protocols (Bitmapped) in Reader mode. */
Nfc sSupProtocol EmulationSupProtocol;
/*< Supported protocols (Bitmapped) in Emulation mode. */
char firmware update info;

} sPN544C3;

} sDeviceCapabilities;

} NFC_CapStruct;
Where
typedef struct tagNfc sSupProtocol

{

unsigned int MifareUL

~e

~.

unsigned int MifareStd
unsigned int IS014443 4A
unsigned int IS014443 4B
unsigned int IS015693

~e ~.

~.

unsigned int Felica

~.

unsigned int NFC

~e

[e S S S S e S

~.

unsigned int Jewel

} Nfc sSupProtocol;

Structures 3-7

NFC_Taglnfo

Description

Not applicable.

Structure Definition

typedef struct tagNFC TaglInfo
{
STRUCT INFO structInfo;
DWORD nTagType, // The tag type.
DWORD nSerialNumberLength, // The length in bytes of the serial number of tag.
BOOL bIsNDEF, // Indicating NDEF formatted.
BOOL bIsLocked // Flag indicating if the tag is locked for write
operation.
DWORD nTagSize // The number of bytes available to writes messages.
DWORD nFreeSpaceSize // The size of the remaining free space in the tag. The
free space is the number of bytes available to writes messages.
DWORD sSerialNumber // The serial number of a tag.
} NFC_TagInfo;

3-8 MC45 NFC Programming Guide

NFC_BTPairinglnfo

Description

Not applicable.

Structure Definition

typedef struct tagNFC BTPairingInfo

{
// BT Address
STRUCT INFO structInfo;
WORD aBTAddress [BT PAIRING SIZE OF BT ADDRESS]
// Device Class property existing Indicator
BOOL bHasDeviceClass
// Device Class value
WORD aBTDeviceClass [BT PAIRING SIZE OF DEVICE CLASS]
// Simple Pairing hash property existing Indicator
BOOL bHasSimplePairingHash
// Simple Pairing //hash value
WORD aBTSimplePairingHash [BT PAIRING SIZE OF PAIRING HASH]
// Simple Pairing Randomizer property existing Indicator
BOOL bHasSimplePairingRandomizer
// Simple Pairing Randomizer value
WORD aBTSimplePairingRandomizer [BT PAIRING SIZE OF PAIRING RANDOM]
// Local Name Length value
WORD nLocalNameLength
// Complete value Indicator
BOOL bIsCompletelLocalName
// Local Name value.
WORD aBTLocalName [BT PATRING MAX LOCAL NAME LENGTH]
// Flag Length value
WORD nFlagLength
// Flags values
WORD aBTFlag [BT_ PAIRING MAX FLAGS LENGTH]
// UUID Length value
WORD nUUIDListLength
// Class number indicator
WORD nUUIDServiceClassNumber
// Complete Value indicator

BOOL bIsCompleteUUIDList

// UUID List Value
WORD aBTUUIDList [BT_PAIRING_MAX_UUID_LIST_LENGTH]

Structures 3-9

// Manufacturer data length value

WORD nManufacturerDatalength

// Byte array containing the manufacturer data

WORD aBTManufacturerData [BT PAIRING MAX MANUFACTURER DATA LENGTH]
} NFC_BTPairingInfo;

Where

// Bluetooth address length

#define BT PAIRING SIZE OF BT ADDRESS 6

// Device Class length.

#define BT PAIRING SIZE OF DEVICE CLASS 3

// Pairing hash size

#define BT PAIRING SIZE OF PAIRING HASH 16
// Pairing random size

#define BT PAIRING SIZE OF PAIRING RANDOM 16
// Max local name length

#define BT PAIRING MAX LOCAL NAME LENGTH 128
// Max UUID List length (in byte)

#define BT PAIRING MAX UUID LIST LENGTH 128
// Max flag length

#define BT PAIRING MAX FLAGS LENGTH 4

// Max manufacturer data length

#define BT PAIRING MAX MANUFACTURER DATA LENGTH 128

3-10 MC45 NFC Programming Guide

CHAPTER4 RETURN VALUES

Introduction

This chapter provides a list of all possible return values along with a description.

NFC_STATUS

NFC_SUCCESS

The function was completed successfully and no error occurred.

NFC_ERROR_BAD_HANDLE

A bad handle value was detected.

NFC_ERROR_BAD_PARAMETER

A wrong value was detected for a parameter.

NFC_ERROR_OUT_OF RESOURCE

Resources error.

NFC_ERROR_BAD_TAG_FORMAT

Incorrect tag format.

NFC_ERROR_BAD_NDEF_FORMAT

Incorrect NDEF format.

NFC_ERROR_TIMEOUT

The communication failed because a timeout expired.

NFC_ERROR_FEATURE_NOT_SUPPORTED

The requested feature is not supported.

NFC_ERROR_NDEF_UNKNOWN

The NDEF message type is unknown.

NFC_ERROR_LOCKED_TAG

A write operation failed because the tag is locked or protected
against writing operation.

NFC_ERROR_TAG_WRITE

An error is detected in the data written into a tag.

NFC_ERROR_INCORRECT_RECORD_NO

Incorrect record number provided as parameter.

NFC_ERROR_UICC_COMMUNICATION

Error in communicating with UICC SE.

NFC_ERROR_TAG_DISCONNECTED

Tag is no longer in Proximity.

NFC_ERROR_TAG_NOT_NDEF

Tag is not NDEF Formatted.

NFC_ERROR_TAG_ALREADY NDEF

Tag is already NDEF Formatted.

4-2 MC45 NFC Programming Guide

NFC_ERROR_TAG_ALREADY_READONLY

Tag is already Made Read only and locked for Writing.

NFC_ERROR_WRONG_RTD

Incorrect RTD type.

NFC_ERROR_TAG_WRITE

Error in the tag write operation.

NFC_ERROR_COMMAND_NOT_SUPPORTED

Command Not supported response from tag.

NFC_ERROR_OPERATION_PENDING

Last operation not yet completed.

NFC_ERROR_INVALID_PARAMETER

Invalid Parameters response from tag.

NFC_ERROR_DLL_NOT_AVAILABLE

DLL not loaded.

NFC_ERROR_NOT_SUPPORTED

NFC not supported in the terminal.

NFC_ERROR_INCORRECT_RECORD_NO

Record No. provided is invalid.

NFC_FAILED

Other failures.

NFC_ERROR_BUFFER_TOO_LARGE

The buffer to be written to a Tag is large than the Tag capacity.

NFC_BATTERY_CRITICAL

Battery percentage is below 6% and polling can’t be started.

NFC_STATUS_FLIGHT_MODE_ON

Flight mode is ON and polling can’t be started.

NFC_NOTIFY_TARGET_LOST

Target moved out of the proximity.

NFC_STATUS_UICC_IN_PROGRESS

UICC card emulation is in progress.

NFC_STATUS_HOH_IN_PROGRESS

Host card emulation is in progress.

NFC_STATUS_RW_IN_PROGRESS

Reader mode is in progress.

NFC_CE_CLOSED

Card emulation stopped due to reader mode enabled.

NFC_STACK_ALREADY_INITIALISED

Stack is already initialized.

NFC_STACK_NOT_INITIALISED

Stack is not initialized.

CHAPTER5 PROGRAMMING OVERVIEW

Introduction

This chapter provides an overview of NFC programming providing step-by-step procedures and examples on
how to initialize and de-initialize the NFC stack, view the NFC capabilities of the system, NFC configuration,
NFC radio and polling services, configuring application types and modes and creating/reading NDEF
messages.

NFC Components

The NFC API is provided as a single DLL named NFCAPI32.dll. It provides its interface via 'C' function calls.
The APl is provided to the developer as a set of files that include the following:

e nfcapi32.dil Dynamic Link Library containing 'C' NFC functions.

e nfcapi32.lib Link file used by applications when linking in NFC functions.
¢ nfcapi.h Include files that define NFC API functions.

¢ nfcdefs.h NFC API defines and structures.

5-2 MC45 NFC Programming Guide

NFC Programming Overview

This Programming Guide is intended to assist programmers with the creation of NFC applications for MC45
NFC mobile computers running a Microsoft Windows Mobile operating system. It provides all of the details
necessary for calling functions that access NFC functionality. The EMDK installer contains header file
NfcApi . h with the function declaration and return error from the NFC stack which needs to be handled by the
application. NFC CPL gets loaded at the boot time itself and then loads the NfcApi .d11. The
nfcmanager.dll is a driver which also gets loaded at the boot time.

The NFC stack is based on client-driver architecture. Within client-driver architecture, multiple client
applications simultaneously access the NFC Zebra APls.

NFC Stack Initialization & De-Initialization

The first function called by the NFC client application should be NFC_Init(). This function initializes the NFC
stack context.

When the NFC functionality is no longer required, the client should call NFC_Delnit() to release the resources
allocated by NFC for this client.

If multiple applications exist, each of them need to initialize the stack separately by calling NFC_Init() function.
The NFC device and stack initialization needs to be performed by an application irrespective of another
application having already done this (i.e. if you have two applications always called in sequence, even though
the first application initializes NFC, the other application also has to initialize NFC).

NFC Capabilities of the System

You can obtain the NFC capabilities of the system by using the API NFC_GetCapabilities(). Using the
information provided, the application can decide whether the features it requires are available in the system.

The API NFC_GetCapabilities() will return following set of information:
1. Device info: hardware chip used, firmware version and hardware version.

2. NFC Modes supported: This indicates whether NFC-P2P, NFC-READER/WRITER and NFC-CARD
EMULATION are supported.

3. If NFC-P2P mode is supported, the protocols and capabilities.

4. If NFC-READER/WRITER mode is supported. The following capabilities on the various tags would be
available:

a. Tag types supported.

b. NDEF reading/writing capability for each tag type.
c. NDEF formatting capability for each tag type.

d. Make read only capability for each tag type.

5. If NFC-CARDEMULATION is supported, the types of card emulation supported are: UICC, embedded
secure element and Host.

Configuring NFC

The APIs related to configuration are:

1. The API for getting default (Current) parameters is NFC_GetConfig().

2,
3.

Programming Overview 5-3

The API for setting configured parameter is NFC_SetConfig().
The API for registering for any configuration changes is NFC_RegisterForConfigChange().

4. At any point of time, the default configuration can be restored by using NFC_SetDefaultConfig().

The configurable parameters are:

¢ Bluetooth passkey: No passkey, 1111, 5555 or any desired. (Default - No Passkey).

¢ Polling time out settings (in sec): Time the stack waits for a response from the controller before declaring
Timeout - 30s, 60 or 90s (Default - 90).

\/ NOTE Before modifying the Configuration, first obtain the system configuration with properly populated fields

using NFC_GetConfig() and then continue to modify the required fields. Subsequently set the
configuration using NFC_SetConfig().

NFC Radio and Polling

The NFC radio will be turned on by the following APIs:

* NFC_RegisterForTagDetection(): When this function is called, the radio is turned on and polling is
started for all the technologies registered.

* NFC_RegisterForMessage(): When this function is called, the radio is turned on and polling is started
for all technologies.

* NFC_EnableBTPairing(): When this function is called, the radio is turned on and poling is started for all
technologies.

¢ NFC_EnableCE(): When this function is called, the radio is turned on and Emulation Phase of Polling
loop is started.

The polling and service layer activities:

1.

The polling process starts and detects the tag in activity. The service layer receives a list of tags in
proximity.

The service layer connects to the first tag in the list and checks if it is NDEF compliant and has an NDEF
message.

If the tag has NDEF messages, it reads the NDEF messages (If multiple NDEF message support is
available, all the messages would be read, check in Capabilities Multiple NDEFMessages flag). For each
NDEF message it reads in, invokes the callback registered for handling that message (TNF and type of the
first record should have been registered). If multiple applications have registered for the same TNF and
TYPE, all are invoked one after the other.

If there are no NDEF messages or if no callback has been registered for the NDEF message, the service
layer checks if any application has registered for the technology. If yes, the application registered callbacks
are invoked one after the other.

The above process is repeated for the next tag in the list. Prior to this it checks if the tag is still present in
the RF field and continues with the process.

If there are no tags left in the list, the Polling/Discovery process is restarted.

5-4 MC45 NFC Programming Guide

The NFC radio will be turned off by the following APIs:

* NFC_CloseHandle(): When this function is called, with the handle obtained through
NFC_RegisterForTagDetection() or NFC_RegisterForMessage(), the radio is turned off.

* NFC_CloseAllHandles()
* NFC_Delnit()

¢ NFC_DisableBTPairing()
* NFC_DisableCE()

\/ NOTE The radio is turned off if it were to be on.

The radio is turned off only after all the close requests are received corresponding to on requests. For
example: if both NFC_RegisterForMessage() and NFC_EnableBTPairing() were called by the application,
only after NFC_CloseHandle() and NFC_DisableBTPairing() are called, the radio is turned off.

Configuring Application Types and Modes

Application Type - Reading and writing NDEF Message(s)

NFC Data Exchange Format (NDEF) is a lightweight binary message format. It is designed to encapsulate one
or more application payloads in to single message construct. The single message construct is called NDEF
Message. Each NDEF message consists of one or more NDEF records. Each NDEF record can carry a
payload of an arbitrary type and up to 2231 - 1 octets in size. If the payload is larger, then the records can be
chained to support bigger data.

Tag | Tag Contents MSG

Rec Rec Rec Rec

1 2 3 4

A\ 4

TNF Type ID Payload | Payload
Value | Value | Vvalue Length Data

Figure 5-1 NDEF Message Format

The TNF values are:

1. TNF-WKT (Well-Known Type)
2. TNF-MIME

3. TNF-AbsURI

4. TNF-EXT (External Type)

Programming Overview 5-5

5. TNF-UNK (Unknown Type)

The application will register the callback for handling the TNF value. The application can also filter for specific
types within the TNF value, e.g. an application can register for TNF-EXT and type “xyz.com:propType” or an
application can register for TNF-WKT and type “U”.

TYPE values for various TNF are described below:
TNF (0x01): NFC Forum Well known types(WKT)

An NDEF message contains the TYPE field. For a TNF type 0x01, NFC forum has defined the following
Global types:

o TextType: T

*+ URI Type: U

» Smart Poster Type: Sp

* Handover Request: Hr

* Handover Select: Hs

» Signature Type: Sig

» Generic Control: Gc

Local types can also be defined where the application can understand the context. E.g. a Smart Poster
contains a record with WKT local type of “act”. Note that Global Types starts with an uppercase letter
whereas a local type starts with a lower case letter.

TNF (0x02) MIME Type

Type example: image/jpeg
TNF (0x03) Absolute URI Type

Type: type field contains an absolute-URI BNF construct defined by RFC 3986
TNF (0x04) NFC Forum External Type (EXT)

External types should have the domain name of the organization defining the type, followed by the type
name.

E.g. PropType defined by organization xyz has the following type name - xyz.com:PropType

Application Mode - Handling NFDEF Messages

The application needs to register for Handling NDEF messages by using NFC_RegisterForMessage().
Through the function NFC_RegisterForMessage(), the application can register for a specific TNF (Type Name
Format)* value:

An application in one call to NFC_RegisterForMessage can register for only one TNF value, but can filter for
multiple types. The types are provided to the function in an array and no. of types is also an input to the
NFC_RegisterForMessage. An application can call NFC_RegisterForMessage several times to register
multiple callbacks for different TNFs or same callback for different TNFs.

If the NFC radio is not on, a call to NFC_RegisterForMessage will turn NFC radio on and start the
Polling/Discovery process.

If a tag is detected with first record of the NDEF message containing the TNF and TYPE value registered by
the application, the callback is invoked.

The callback will provide the following parameters: Message handle, number of records in the message, TNF
value, array of payload lengths, array of type lengths and array of ID lengths corresponding to each record.
The application can now read the NDEF Records using NFC_GetRecord.

5-6 MC45 NFC Programming Guide

The application can call NFC_GetRecord and obtain the TNF, payload, TYPE and ID. If the payload in the
record contains an embedded NDEF message, the same can be extracted by using
NFC_GetEnclosedMessagelnfo and subsequently NFC_GetRecord.

After handling the messages and records, the application calls NFC_CloseHandle to notify the service layer.
The application can unregister by calling NFC_CloseHandle with the registry handle. If there are no other
users of NFC, the NFC is turned off and the polling process is stopped.

Below is the sequence of steps (calls) the application needs to perform to retrieve and manage NDEF
record(s):

1.
2.
3.

NFC_lInit()

NFC_Get Capabilities (); // APl recommended to verify the stack capabilities.
NFC_RegisterForMessage()

a. NFC radio will be automatically turned on and Polling/Discovery process starts.
As part of message callback the following information is received:

a. Message Handle

s

Number of Records in the Message

TNF value

a o

Array of Length of Payloads

e

Array of Type Lengths

f. Array of ID Lengths

NFC_GetRecord() to obtain payload. This function returns:
a. TNF value

b. TYPE Value

c. ID

d. Payload.

Optionally, NFC_GetEnclosedMessagelnfo() could be used to extract an embedded NDEF message and
NFC_GetRecord()

NFC_CloseHandle()* to close Message Handles obtained.
NFC_CloseHandle()* to close handle received through callback - hOperation.
a. Ifthere are other Apps waiting for the same TNF and TYPE, those callbacks are invoked.

NFC_CloseHandle()* with the registry handle -

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

10. NFC_Delnit() to de-initialize the stack.0

\/ NOTE * Calling NFC-Delnit() will close all open handles

Programming Overview 5-7

Application Mode - Writing NDEF Messages

This application is concerned in writing NDEF message to tags of specific types. The application after calling
NFC_Init() and optionally NFC_GetCapabilities() and configuration related APls, registers for handling tags.
The API used is NFC_RegisterForTagDetection.

Through the function NFC_RegisterForTagDetection, the application can register for specific tag types or all
tag types.

If the NFC is not on, a call to NFC_RegisterForTagDetection will turn on NFC and also start the
Polling/Discovery process.

The application preferably should have created NDEF message and be ready for writing before calling
NFC_RegisterForTagDetection. The application can use NFC_CreateMessage to create a message, add
records to it using NFC_AddRecord. Multiple records can be added by calling NFC_AddRecord using the
same message handle. This message can be used in NFC_WriteMessage. NFC_WriteMessage takes inputs
of messages and the no. of messages and writes into the connected tag. (currently only one message writing is
supported).

When a tag type registered by the application is detected, its callback is invoked. The callback provides
information on the tag in a structure. If blIsSNDEF in the structure is TRUE, then the tag is NDEF formatted, if
blsLocked is FALSE, the tag is writable. If the tag is not NDEF formatted and formatting for that tag type is
supported, the application can call NFC_NDEFFormat to format the tag. NFC_WriteMessage can be called to
write in the NFC Message.

After handling the writing, the application calls NFC_CloseHandle to notify the service layer of the completion.
The application can unregister by calling NFC_CloseHandle with the registry handle. If there are no other
users of NFC, the NFC is turned off and the polling process is stopped.

Below is the sequence of steps (calls) the application needs to perform write NDEF message(s) to a tag:
1. NFC_lInit()

2. NFC_GetCapabilities() // APl recommended to verify the stack capabilities.

3. NFC_CreateMessage()

4. NFC_AddRecord() to add record into a message; this API can be called multiple times to add more
records. (Record structure filled in with required record information and message handle are the inputs.
See NFC_Record on page 3-3).

5. NFC_RegisterForTagDetection.
a. Radio will be turned on.
6. Optionally: NFC_NDEFFormat()
7. NFC_WriteMessage() takes following inputs:
a. Input of messages and the no. of messages.
b. Callback will be invoked on completion with status.
8. NFC_CloseHandle()* with handles to the connection and message.
9. NFC_CloseHandle()* with the registry handle.

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

10. NFC_Delnit() to de-initialize the stack.

5-8 MC45 NFC Programming Guide

\/ NOTE * Calling NFC-Delnit() will close all open handles

Application Mode - Enabling Read-Only

\/ NOTE This application type is a subset of Writing NDEF Message and is only enabling making Tag Read-Only.
Once a tag is made read-only, it cannot be modified/erased/written again.

If an application wants to add this functionality to the application's Writing NDEF Message, then the following
additional steps are required.

Confirm the tag type in NFC_Taglnfo structure obtained through callback is supporting 'read-only' capability.
This information is available through NFC_GetCapabilities. After NFC_WriteMessage callback has confirmed
the success of writing the message, Call NFC_MakeReadOnly.

Below is the sequence of steps (calls) the application needs to perform to make a tag read-only:

1. NFC_lInit()

2. NFC_GetCapabilities() (it would provide confirmation if tag type supports Make read-only capability).
3. NFC_CreateMessage()

4. NFC_AddRecord() to add record into a message; this API can be called multiple times to add more
records.

(The inputs for Record Structure are: a record type information and the message handle. See Chapter 3,
Structures for Record Structure description).

5. NFC_RegisterForTagDetection
a. Radio will be turned on

b. (Callback provides NFC_Taglinfo structure data, which indicates Tag Type, the capability to make the
Tag read only can be confirmed by checking with the structure
NFC_CapStruct. TagsMakeReadOnlySupported obtained through NFC_GetCapabilities, similarly
NDEF Formatting support is indicated through structure NFC_CapStruct. TagsFormattingSupported)

6. Optionally: NFC_NDEFFormat
7. NFC_WriteMessage() takes following inputs:
a. Input of messages and the No. of messages.
8. NFC_MakeReadOnly() will enable tag read-only.
9. NFC_CloseHandle()* with handles to the connection and message.

10. NFC_CloseHandle()* with the registry handle.

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

11. NFC_Delnit() - De-Initialize stack.

\/ NOTE * Calling NFC-Delnit() will close all open handles.

Programming Overview 5-9

Application Mode - Enabling Card-Emulation

This application is concerned with card emulation. The application calls NFC_Init() and NFC_GetCapabilities().
NFC_GetCapabilities would provide information whether card emulation is supported and the type of card
emulation supported. The application can call NFC_EnableCE(), with parameters of UICC/eSE/Host as the
source for emulation, and a callback which will be invoked for any notifications. Callback can be NULL to
disable notifications.

For Host based emulation, the application needs to call NFC_RegisterForHostCardEmulation() and
NFC_AddRecord() before calling NFC_EnableCE().

If NFC is not on, it will be turned on and the Polling loop is set to Emulation phase only. If a callback was
provided during registration, the callback will be invoked indicating the type of Transaction that has occurred.

The card emulation can be turned off by calling NFC_DisableCE(). If there are no other users of NFC, the NFC
is turned off and the polling process is stopped.

Below is the sequence of steps (calls) the application needs to perform to enable Card Emulation:

1. NFC_lInit()

2. NFC_GetCapabilities() (it would provide information if Card Emulation is supported).

3. Optionally for Host based Emulation: NFC_RegisterForHostCardEmulation() - parameters include:
a. Size of Card
b. Read Access
c. Write Access

d. Pointer to Message Handle.

4. Optionally for Host based Emulation: NFC_AddRecord(); zero or more records can be added to the
message.

5. NFC_EnableCE() parameters includes:
a. UICC/eSE
b. Notification Callback Handler registration.

NFC radio is turned on and emulation phase is included in the polling loop.

6. NFC_DisableCE() (It will disable Card Emulation - turned off).

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

7. NFC_Delnit().

Application Mode - Enabling Bluetooth Pairing through NFC

This application is concerned with enabling Bluetooth pairing through NFC. Once the device is paired, it can
use other Bluetooth APIs and continue. The application calls NFC_Init() and NFC_GetCapabilities().
NFC_GetCapabilities would provide information whether BT-Pairing is supported and the type of Bluetooth
Pairing (STATIC/DYNAMIC). The pin key can be set through NFC_SetConfig(). The application can then call
NFC_EnableBTPairing().

If NFC is not on, it will be turned on and the Polling loop is set to all tags/technologies. Even if NFC is on for
only specific tags/technologies, this call enables all tags/technologies. If the notification is set, on any Bluetooth
device paired, the callback will be invoked passing on a structure containing paired device details.

5-10 MC45 NFC Programming Guide

When NFC_DisableBTPairing() is called, and if there are no other applications/users, the NFC is turned off and
the polling process is stopped.

Below is the sequence of steps (calls) the application needs to perform to enable Bluetooth Pairing:

1. NFC_lInit()

2. NFC_GetCapabilities() (it would provide information if Bluetooth Pairing is supported).

3. NFC_GetConfig() //to get current configuration (pass key, polling timeout).

4. NFC_SetConfig() to set Pass Key.

5. NFC_RegisterForConfigChange() (Registers to get notified if any other App changes configuration).
6. NFC_EnableBTPairing() parameters included.

a. Notification Callback Handler registration.

(NFC Radio will be turned on, when a Static Handover Message is received, Bluetooth radio is turned on, if
it is off and Pairing/Bonding is initiated. On completion callback is invoked).

7. NFC_DisableBTPairing() (Disables Bluetooth Pairing through NFC).

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

8. NFC_Delnit().

Application Mode - Direct Reading/Writing over NFC

This application is concerned with transacting a proprietary protocol over layer like ISO14443A-3 for
reading/writing raw data. The application registers for tags with the protocol supported with
NFC_RegisterForTagDetection(). On callback, it can check with tag infostructure, the protocols supported by
the tag. The application can then use NFC_ExchangeData(), to send its command and data, and receive the
response and data from the tag.

If NFC is not on, it will be turned on and the polling loop is set to the required tags/technologies.

Below is the sequence of steps (calls) the application needs to perform transactions over lower Protocol:
1. NFC_lInit().

2. NFC_GetCapabilities() // Verify the stack capabilities using this API.

3. NFC_RegisterForTagDetection() (TaglInfo is received in Callback, when a tag is detected).
4. NFC_ExchangeData (can be repeated many times).

5. NFC_CloseHandle().

6. NFC_Delnit().

Example 1:

This example is providing steps for reading/writing to MiFare Ultralight tag directly using commands and data.
The parameters used in NFC_ExchangeData for Reading/Writing raw data to MiFare Ultralight are given
below:

Programming Overview 5- 11

For writing 4 bytes to Mifare ultralight:

Char pReaderToTagBuffer[] = {0xA2, 0x04, 0x2A, 0x2B, 0x2C, 0x2D, 0xc0, 0xc9};
The first 6 elements of the buffer:

0xA2: “Write” command identifier for Mifare Ultralight.

0x04: Block No. to be written.

0x2A, 0x2B, 0x2C, 0x2D: data Bytes

Last two bytes are CRC bytes.

For writing total 48 bytes:

Since MiFare Ultralight command set supports writing only 4 bytes at a time, NFC_ExchangeData() has to
be called 12 times, each time with Block No., the corresponding data for the block and CRC bytes in
pReaderToTagBuffer[] for 48 bytes to be written.

For reading:

char pReaderToTagBuffer[] = {0x30, 0x04, 0x26, Oxee};
0x30: “Read” command identifier for Mifare Ultralight.
0x04: Block No. from where data to be read.

Last two bytes are CRC bytes.

Read data will be available in “pTagToReaderBuffer”.

NDEF Message

Smart Poster NDEF Message Creation Example

A smart poster NDEF message is created with the following data:

1. URL: http://www.msi.com/mc45/.

2. Text: “A Tour of MC45.”

3. Action: Launch browser.

A smart poster message is structured as follows:

1. Sp NDEF message contains only one record- of TNF value - TNF-WKT and Type: Sp.
2. The payload of the Sp record contains in this example three records: URI, text and action records.
The creation of the Smart poster message is as follows.

1. First create a message (This message goes as a payload into Smart Poster Record)
2. Add the three records (URI, text and action) into this message.

3. Get a copy of the NDEF message created.

4. Create a message (This will be the Message written into tag).

5. Add an Sp record with the payload being the NDEF message obtained in (3).

Below are the details:

1. Enclosed Message Creation
NFC_Handle enclMessageHandle;// Handle to the enclosed Message

NFC_CreateMessage(&enclMessageHandle); // Create enclosed Message

5-12 MC45 NFC Programming Guide

2. Records Creation
URI Record Creation:
UNSS8 Buffer[] = “msi.com/mc45”;
NFC_Record NDEFRecord;
NDEFRecord.Type = TYPE_URI;
NDEFRecord.URI.URIType = HTTP_WWW,;
NDEFRecord.URI.Payload = Buffer;

NFC_AddRecord(NDEFRecord, &enclMessageHandle); // Use this API to add the record to the
message.

Text Record Creation:
UNSS8 Buffer[] = “A Tour of MC45.”
UNSS8 lang]] = “en”
NFC_Record NDEFRecord;
NDEFRecord.Type = TYPE_TEXT;
NDEFRecord.Text.CharEncoding = CHAR_UNSS;
NDEFRecord.Text.Lang = lang;
NDEFRecord.Text.Payload = Buffer;
NDEFRecord.Text.PayloadLength = strlen(Buffer);
NFC_AddRecord(NDEFRecord, &enclMessageHandle);
Action Record Creation:
UNS8 Buffer = “07; // 0 indicating “launch the URI”
UNSS type][] = “act’;
NFC_Record NDEFRecord;
NDEFRecord.Type = TYPE_GENERAL;
NDEFRecord.General. TNF = TNF_WKT;
NDEFRecord.General. Type = type;
NDEFRecord.General.IDLength = 0O;
NDEFRecord.General.Payload = Buffer;
NDEFRecord.General.PayloadLength = strlen(Buffer);
NFC_AddRecord(NDEFRecord, &enclMessageHandle);

3. Get Copy of enclosed Message
UNS8 Buffer[100];
DWORD BufLength;
NFC_GetMessageContent(encIMessageHandle, Buffer, &BufLength);

4. Smart Poster Message Creation

NFC_Handle spMessageHandle;

Programming Overview 5-13

NFC_CreateMessage(&spMessageHandle);

5. Smart Poster Record Addition
NFC_Record NDEFRecord;

NDEFRecord.Type = TYPE_GENERAL;
NDEFRecord.General. TNF = TNF_WKT,
NDEFRecord.General. Type = type;
NDEFRecord.General.IDLength = 0;
NDEFRecord.General.Payload = Buffer;
NDEFRecord.General.PayloadLength = BufLength;
NFC_AddRecord(NDEFRecord, &enclMessageHandle);

Now, message can be written as follows:

Handles[0]=spMessageHandle;
NFC_WriteMessage(hConnection, Handles, 1);

Below is the sequence of steps (calls) the application needs to perform to write Smart Poster NDEF Message:
1. NFC_lInit()
2. NFC_GetCapabilities() (it would provide confirmation if Tag type supports Make read-only capability)

NFC_CreateMessage() for Enclosed message creation.

> @

NFC_AddRecord() to add URI record.

5. NFC_AddRecord() to add text record.

6. NFC_AddRecord() to add action record.

7. NFC_GetMessageContent(enclMessageHandle1, Buffer, &BufLength);
8. NFC_CreateMessage() for Smart Poster Message creation.

9. NFC_AddRecord() for Smart Poster record addition.

10. NFC_RegisterForTagDetection.

a. Radio will be turned on,
11. (Callback - receive handle to the tag).
12. Optionally: NFC_NDEFFormat.
13. NFC_WriteMessage(hConnection, Handles, 1); //Handles[0]=spMessageHandle
14. Optionally: NFC_MakeReadOnly() to make tag read-only.

15. NFC_CloseHandle(); // Issue close handle for the connection handle received through callback. The
application can wait for further callbacks and continue to write messages on other Tags by repeating steps
11 to 15 OR If the application is done it can go through further steps 16 & 17 and exit.

16. NFC_CloseHandle(); // Optionally, Issue close Handles for messages and registry.

5-14 MC45 NFC Programming Guide

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

17. NFC_Delnit(); // will close all open handles.

Smart Poster NDEF Message Reading Example
This example shows the reading of the above Smart Poster NDEF message.
The reading of the Smart poster message is as follows:

1. As part of the callback API, receive the number of records in the message and the TNF type. This would
show 1 and TNF-WKT respectively.

2. Read the first record and Get the Type, It shows “Sp” indicating the payload has an NDEF Message.

3. Using NFC_GetEnclosedMessagelnfo(), read the Message handle of the enclosed message, number of
records, TNF, payload lengths, type lengths and ID lengths.

4. Using the NFC_GetRecord, read the individual records.

First Message Handling
/I Callback API indicates noOfRecords is one and tnf is TNF-WKT and provides messageHandle;

Reading Record of the main message
UNS8 Buffer[100];
WORD tnf;
UNSS8 type[10];

NFC_GetRecord(messageHandle, 1, &tnf, Buffer, type, NULL);

[/Itype will indicate that this is Sp record

Reading enclosed message info in the SP Record
DWORD PayloadLengths[10];
WORD TypeLengths[10], IDLengths[10], noOfRecords;
NFC_HANDLE encIMessageHandle;

NFC_GetEnclosedMessagelnfo(MessageHandle, 1, &enclMessageHandle, &noOfRecords, PayloadLengths,
TypeLengths, IDLengths)

// the enclosed message has 3 records

Reading individual records in the enclosed message
UNS8 Buffer1[100], Buffer2[100],Buffer3[100];
WORD tnf1, tnf2, tnf3;

UNSS8 type1[10], type2[10], type3[10];

NFC_GetRecord(enclMessageHandle, 1, &tnf1, Buffer1, type1, NULL);
NFC_GetRecord(enclMessageHandle, 2, &tnf2, Buffer2, type2, NULL);
NFC_GetRecord(enclMessageHandle, 3, &tnf3, Buffer3, type3, NULL);

Programming Overview 5-15

Below is the sequence of steps (calls) the application needs to perform to read Smart Poster NDEF Message:
1. NFC_lInit()
2. NFC_RegisterForMessage(appCallback, NULL, TNF-WKT, Typesarray, 1, ®MsgHandler).

a. NFC radio will be automatically turned on - Polling/Discovery process starts

3. Need to wait for the callback MessageHandle, No. of Records, tnf, PayloadLengths[], TypeLengths]],
IDLengths[] will be available through callback

4. NFC_GetRecord(MessageHandle, 1, &tnf, Buffer, type, NULL); // since we have registered for only “Sp”
message above, this step is not necessary. (With this step we are seeing the record type is “Sp” and
continuing to GetEnclosedMessagelnfo)

5. NFC_GetEnclosedMessagelnfo(MessageHandle, 1, enclIMessageHandle &noOfRecords, &tnf,
PayloadLengths, TypelLengths, IDLengths)

6. NFC_GetRecord(enclMessageHandle, 1, &tnf1, Buffer1, type1, NULL);
7. NFC_GetRecord(enclMessageHandle, 2, &tnf2, Buffer2, type2, NULL);
8. NFC_GetRecord(enclMessageHandle, 3, &tnf3, Buffer3, type3, NULL);

9. NFC_CloseHandle(); // Issue close handles for the message handles and connection handle received
through callback. The application can wait for further callbacks and continue to receive and handle further
messages by repeating steps 4 to 9 or If the application is done it can go through further steps 10 and 11
and exit.

10. NFC_CloseHandle(); //optionally, with the registry handle.

a. Ifthere is no other app waiting for NFC resources the NFC radio is turned off and the polling process is
stopped.

11. NFC_Delnit(); // will close all open handles.

5-16 MC45 NFC Programming Guide

4zEBRA

TECHNOLOGIES

Zebra Technologies Corporation
Lincolnshire, ILU.S.A
http://www.zebra.com

Zebra and the Zebra head graphic are registered trademarks of ZIH Corp. The Symbol logo is a
registered trademark of Symbol Technologies, Inc., a Zebra Technologies company.
© 2015 Symbol Technologies, Inc.

MNO000145A02 Revision A - February 2015

	Revision History
	Table of Contents
	About This Guide
	Introduction
	Chapter Descriptions
	Notational Conventions
	Service Information

	Functions
	Introduction
	NFC_Init()
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example

	NFC_RegisterForHostCardEmulation()
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example

	NFC_EnableBTPairing()
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example
	Description
	Function Prototype
	Parameters
	Return Values
	Comments
	See Also
	Example

	Callback Prototypes
	Introduction
	NFC_Config_Callback
	Description
	Prototype
	Parameters
	Return Values
	Description
	Function Prototype
	Parameters
	Return Values
	Description
	Function Prototype
	Parameters
	Return Values
	Description
	Function Prototype
	Parameters
	Return Values
	Description
	Function Prototype
	Parameters
	Return Values
	Comments

	Structures
	Introduction
	NFC_HANDLE
	Description
	Structure Definition

	STRUCT_INFO
	Description
	Structure Definition
	Description
	Structure Definition

	NFC_Config
	Description
	Structure Definition
	Description
	Structure Definition
	Description
	Structure Definition
	Description
	Structure Definition
	Description
	Structure Definition
	Description
	Structure Definition

	Return Values
	Introduction
	NFC_STATUS

	Programming Overview
	Introduction
	NFC Components
	NFC Stack Initialization & De-Initialization
	NFC Capabilities of the System
	Configuring NFC
	NFC Radio and Polling
	Configuring Application Types and Modes
	Application Mode - Handling NFDEF Messages
	Application Mode - Writing NDEF Messages
	Application Mode - Enabling Read-Only
	Application Mode - Enabling Card-Emulation
	Application Mode - Enabling Bluetooth Pairing through NFC
	Application Mode - Direct Reading/Writing over NFC

	NDEF Message
	Smart Poster NDEF Message Creation Example
	Smart Poster NDEF Message Reading Example
	First Message Handling
	Reading Record of the main message
	Reading enclosed message info in the SP Record
	Reading individual records in the enclosed message

